
Performance Evaluation of MQTT Communication
with Heterogeneous Traffic

1st Ryohei Banno
Kogakuin University

Tokyo, JAPAN
banno@computer.org

Abstract—One of the protocols gaining popularity for Internet
of Things (IoT) systems is MQTT. It is lightweight and has loose
coupling nature derived from the publish/subscribe communi-
cation model. The capability of handling heterogeneous data is
crucial in supporting cooperation among various applications and
sensors. In this study, we evaluate the performance of MQTT
communication with the combination of different payload sizes.
Experimental result shows different tendencies of the hetero data
capability by broker products.

Index Terms—MQTT, Publish/subscribe, IoT

I. INTRODUCTION

The Internet of Things (IoT) is rapidly expanding in
many industries, including smart factories and warehouses.
MQTT [1] is a suitable protocol for exchanging data in such
IoT systems. It is based on the publish/subscribe model [2] so
that it has loose coupling nature, i.e., it enables relationships
among devices and applications to vary flexibly.

To develop a large-scale IoT system, the performance of
an MQTT broker is a major concern. Since an MQTT broker
needs to handle all messages from publishers to subscribers,
it could be a bottleneck. Hence, clarifying the broker perfor-
mance characteristics has been a practical topic, and various
existing studies evaluate MQTT brokers [3]–[7].

However, the existing studies do not adequately consider
heterogeneous traffic. IoT data is diversifying; evolving sensor
devices enable us to obtain high-quality data like 4k/8k
images, whereas some applications require small data such
as temperature at short intervals for real-time monitoring.
Considering an IoT platform for horizontal data integration
among various sensors and applications, an MQTT broker
could be a core component. Therefore, its performance for
heterogeneous traffic should be clarified.

In this study, we evaluate multiple MQTT broker products
to clarify the performance characteristics for heterogeneous
traffic.

II. RELATED WORK

There are existing studies aiming to confirm MQTT broker
performance. Mishra [7] conducted a fundamental evaluation
for both public brokers and locally deployed brokers. Ronzani
et al. [3] measured how distributed MQTT brokers can scale.
Bender et al. [4] built a test framework independent of MQTT

This work was supported by JST, PRESTO Grant Number JPMJPR21P8.

3

Publishers Broker Subscribers

L2 switch

Ingress
throughput

Egress
throughput

Latency

Fig. 1. Experimental environment

TABLE I
MACHINE INFORMATION

Item Specs
CPU Core i9 10900K 3.7 GHz (10 cores, 20 threads)
Memory 64 GB
Network 1 GbE
OS Ubuntu 20.04

TABLE II
SOFTWARE VERSIONS

Type Software Version

Broker
Mosquitto 1.6.9
HiveMQ CE 2022.1
VerneMQ 1.12.6.2

Client MQTTLoader 0.8.4

implementation and evaluated popular open-source implemen-
tations. Gemirter et al. [5] compared MQTT with AMQP and
HTTP using a real-time smart city public data set. Different
from these studies, we focus on heterogeneous traffic.

III. EXPERIMENTAL CONFIGURATION

To conduct experiments, we use three servers, as shown
in Figure 1 and Table I. As preliminary testing, we confirmed
that the round-trip-time by the ping command is 0.720 to 0.758
milliseconds, and the throughput by the iperf3 command is 913
to 926 Mbps among servers. We use three broker products,
Mosquitto, HiveMQ, and VerneMQ, and a load-testing tool
MQTTLoader [8], as listed in Table II.

We set three kinds of configurations as follows:
• Small data traffic: 1, 024 bytes payload size and up to

200, 000 msg/sec ingress messages.
• Large data traffic: 20 Mbytes payload size and up to 10

msg/sec ingress messages.



Small-data throughput in hetero-case

Small-data throughput in homo-case

Ratio of small-data throughput
to homogeneous case

Ratio of large-data throughput
to homogeneous case

Small data Large data

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

Small data Large data

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

Small data Large data

Fig. 2. Throughput ratio with Mosquitto

Small-data throughput in hetero-case

Small-data throughput in homo-case

Ratio of small-data throughput
to homogeneous case

Ratio of large-data throughput
to homogeneous case

Small data Large data

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

Small data Large data

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

Small data Large data

Fig. 3. Throughput ratio with HiveMQ

Small-data throughput in hetero-case

Small-data throughput in homo-case

Ratio of small-data throughput
to homogeneous case

Ratio of large-data throughput
to homogeneous case

Small data Large data

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

Small data Large data

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

0

0.5

1

5 25 50 75 100

R
at

io

CPU limitation [%]

Ingress Egress

Small data Large data

Fig. 4. Throughput ratio with VerneMQ

• Hetero data traffic: the combination of the above two.

In each of the small and large data configurations, the num-
ber of subscribers is five, where they compose a shared-
subscription group to receive messages in parallel. Hetero data
configuration combines these.

Regarding MQTT parameters, we set the protocol version
to 5.0, the QoS level to zero, and the retain flag to false. The
measurement metrics are ingress throughput, egress through-
put, and latency from the publishers to the subscribers. Mea-
surement time for each experiment is 70 seconds, including
five seconds ramp-up/ramp-down times.

IV. RESULT AND DISCUSSION

We measured throughput with changing the available CPU
resource of brokers by the cpulimit command. Note that only
one core is enabled in this experiment. Figures 2, 3, and 4 show
how the average throughput of hetero data changes compared
to the homogeneous data cases, i.e., small and large data.
For example, in the case of Mosquitto with a five percent
CPU limitation, the small data ingress throughput is about 88
percent of the homogeneous small data case, whereas the large
data throughput is about 25 percent of the homogeneous large

Homogeneous Heterogeneous

Homogeneous Heterogeneous

Fig. 5. Latency for small data

Homogeneous Heterogeneous

Homogeneous Heterogeneous

Fig. 6. Latency for large data

data case. From these results, Mosquitto and HiveMQ tend to
suppress large data, whereas VerneMQ suppresses small data.

We also measured latency without the CPU resource limi-
tation. We use the following ingress traffic patterns:

• 10, 000 msg/sec small data & 1 msg/sec large data
• 40, 000 msg/sec small data & 2 msg/sec large data
• 83, 333 msg/sec small data & 4 msg/sec large data

Figures 5 and 6 show the results of latency for Mosquitto.
The average latency increases for both small and large data
compared to the homogeneous data cases.

V. CONCLUSION

In this study, we conducted experiments to clarify the
characteristics of MQTT brokers for heterogeneous traffic.
Future work includes additional experiments with practical IoT
traffic patterns and client configurations.

REFERENCES

[1] MQTT, https://mqtt.org/ (accessed Mar. 29, 2023).
[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2,
pp. 114–131, 2003.

[3] D. Ronzani, C. E. Palazzi, and P. Manzoni, “Bringing mqtt brokers
to the edge: A preliminary evaluation,” in IEEE Annual Consumer
Communications and Networking Conference, 2022, pp. 695–698.

[4] M. Bender, E. Kirdan, M.-O. Pahl, and G. Carle, “Open-source mqtt
evaluation,” in IEEE Annual Consumer Communications and Networking
Conference, 2021, pp. 1–4.

[5] C. B. Gemirter, C. Senturca, and S. Baydere, “A comparative evaluation
of amqp, mqtt and http protocols using real-time public smart city data,”
in International Conference on Computer Science and Engineering, 2021,
pp. 542–547.

[6] E. Gamess, T. N. Ford, and M. Trifas, “Performance evaluation of a
widely used implementation of the mqtt protocol with large payloads in
normal operation and under a dos attack,” in ACM Southeast Conference,
2021, p. 154–162.

[7] B. Mishra, “Performance evaluation of mqtt broker servers,” in Interna-
tional Conference on Computational Science and Its Applications, 2018,
pp. 599–609.

[8] R. Banno, K. Ohsawa, Y. Kitagawa, T. Takada, and T. Yoshizawa,
“Measuring Performance of MQTT v5.0 Brokers with MQTTLoader,” in
Proc. IEEE Consumer Communications & Networking Conference, 2021,
pp. 1–2.


