
Acceleration of MQTT-SN protocol using P4
1st Ryohei Banno
Kogakuin University

Tokyo, JAPAN
banno@computer.org

2nd Koki Osawa
Kogakuin University

Tokyo, JAPAN

Abstract—MQTT-SN is one of the protocols attracting at-
tention for Internet of Things (IoT) systems. It is suitable
for collecting data from sensor devices due to its lightweight
protocol design and loose coupling nature derived from the
publish/subscribe model. To handle enormous IoT data, the
performance of MQTT-SN brokers is a significant concern.
Typical approaches to improving performance are using multiple
brokers for load distribution and bringing out the hardware
performance. However, the former involves larger latency due
to cooperation overhead among brokers, and the latter has
less flexibility than generic software brokers. To address these
problems, we propose PAMS, an in-network acceleration method
of the MQTT-SN protocol. PAMS makes a network switch
perform a part of broker functionality by using P4, a leading
data plane programming language. Although PAMS introduces
in-network acceleration for performance improvement, it uses a
software broker for the principal functionality of MQTT-SN so
that we obtain flexibility as well. From analytical and quantitative
evaluation, we clarify that PAMS lowers the load of the broker
and reduces latency.

Index Terms—MQTT-SN, IoT, Publish/subscribe, P4, In-
network processing, Software-defined networking

I. INTRODUCTION

Internet of Things (IoT) is rapidly growing in various fields,
e.g., smart factories [1] and smart warehouses [2]. A typical
IoT system consists of connected devices such as sensors and
collects data for subsequent utilization like monitoring devices
and anomaly detection.

MQTT-SN [3], [4] and MQTT [5] are suitable protocols
for such exchange of IoT data. They are based on the pub-
lish/subscribe model [6] so that they have loose coupling
nature, i.e., they enable relationships among devices and
applications to vary flexibly. The principle difference between
MQTT-SN and MQTT is that the former relies on UDP,
whereas the latter works on TCP. Besides, MQTT-SN reduces
the message size compared to MQTT. Note that we call
an MQTT-SN server “a broker” in this paper, whereas it
is referred to as “a gateway” in the specification [4]. This
is because we focus on the communication among MQTT-
SN clients via a stand-alone MQTT-SN server like Mosquitto
RSMB [7].

To handle increasing IoT data, the performance of MQTT-
SN brokers is a significant concern. Typical approaches for
improving the performance of messaging brokers are using

This work was supported by JST, PRESTO Grant Number JPMJPR21P8
and by JSPS KAKENHI Grant Number 19K20253.

multiple brokers for load distribution [8]–[11] and making the
best possible use of hardware performance [12]. However, the
former involves larger latency due to cooperation overhead
among brokers, and the latter has less flexibility than generic
software brokers.

To address these issues, we propose a P4-based Acceleration
method for MQTT-SN brokers (PAMS). It makes a network
switch perform a part of broker functionality by using P4 [13],
a leading data plane programming language. PAMS uses
a generic software broker for the principal functionality of
MQTT-SN while it introduces the in-network acceleration so
that we obtain both flexibility and better performance.

The remainder of this paper is organized as follows. Sec-
tion II introduces related studies on performance improvement
of messaging brokers. Section III explains PAMS, while Sec-
tion IV presents the analytical and experimental evaluation.
Finally we conclude this paper in Section V.

II. RELATED WORK

There are existing studies for improving the performance of
brokers of MQTT-SN and MQTT.

Hunkeler et al. [3] introduce two kinds of MQTT-SN
brokers: a transparent broker and an aggregating broker. The
former maintains a connection to an MQTT broker for each
MQTT-SN client, whereas the latter maintains one connection
to an MQTT broker for all MQTT-SN clients. The aggregating
broker is suitable to obtain scalability since we can construct
a tree topology from multiple aggregating brokers and an
MQTT broker; it helps to distribute the load of maintaining
the connection of clients. Likewise, several studies intend to
use multiple brokers for load distribution. MQTT-ST [8] is
a method to form a spanning tree among multiple brokers.
Similarly, ILDM [11] uses multiple brokers by connecting
them and creating a delivery tree. These methods can improve
throughput for some situations, but multi-hop forwarding
among brokers may cause high latency. Detti et al. [9] have
proposed a scheme that reduces inter-broker communication to
mitigate such issues due to cooperation among brokers. How-
ever, it requires subscribers to have additional functionality
of managing multiple sessions with brokers. That is, it could
impair some strengths of MQTT, such as the inter-operability
given by the standardized protocol and simplified connection
management in clients derived from the publish/subscribe
model.

banno
テキストボックス
Draft version

Another approach is to bring out the hardware performance.
Pipatsakulroj et al. propose muMQ [12], which is a high-
performance MQTT broker. It efficiently utilizes multicore
CPUs and avoids kernel overhead by using DPDK. Although
it achieves better throughput and latency, it is less flexible than
generic software brokers, e.g., it requires hardware supporting
DPDK and thus limits the choice of broker hardware. Besides,
users cannot selectively use various software broker products
in exchange for improved performance.

Unlike the existing studies, PAMS provides both flexibility
and better performance almost without increasing latency.
Furthermore, PAMS keeps the inter-operability given by the
standardized protocol specification, i.e., it does not require
clients to have additional functionality so that any implemen-
tation following the MQTT-SN specification is applicable.

P4-based in-network processing, which we adopt, has been
attracting much attention recently. From this viewpoint, several
studies introduce P4 into publish/subscribe messaging [14]–
[16]. However, to the best of our knowledge, no studies are
directed to utilize P4 to accelerate the MQTT-SN protocol.

Note that some application layer techniques also improve
the performance of MQTT-SN and MQTT. Alshantout et al.
propose a method using LT codes to improve the performance
of the MQTT-SN protocol [17]. Such methods can be used in
combination with PAMS.

III. IN-NETWORK ACCELERATION OF MQTT-SN

To improve the performance of MQTT-SN and obtain flexi-
bility, we propose an in-network acceleration method, PAMS.
It uses P4 and makes a network switch perform a part of broker
functionality.

A. MQTT-SN

MQTT-SN [3], [4] is an application layer protocol based
on the publish/subscribe model [6]. In MQTT-SN communi-
cation, A publisher, a data sender, sends a Publish message
to the broker specifying a topic. A subscriber, a data receiver,
sends a Subscribe message to the broker specifying topics of
interest. The broker forwards a Publish message to subscribers
interested in its topic.

There are four terms that express a topic: a topic ID, pre-
defined topic ID, short topic name, and topic name. A topic ID,
pre-defined topic ID, and short topic name are two bytes-long.
A topic ID and a pre-defined topic ID are short expressions of a
topic name. The difference is that Topic IDs need a registration
process in advance between publishers and the broker, whereas
pre-defined topic IDs do not need such a process, i.e., their
meanings are known in advance.

A publisher specifies a topic using two bytes-long topic
information: a topic ID, pre-defined topic ID, or short topic
name. A subscriber specifies interest by a pre-defined topic ID,
short topic name, or topic name. If it specifies a topic name,
the corresponding topic ID is notified by the Suback message
in response to the Subscribe message. The above scheme
allows exchanging data between a publisher and subscribers

Control plane

Incoming
packets

Outgoing
packets

Target device (switch, etc.)

Program in P4

P4 Compiler Table entries,
packet-in/out, etc.

Controller

Pa
rs

er

De
pa

rs
er

Data plane

Match-action pipeline

Tables

Fig. 1. Overview of P4

while suppressing message size with two bytes-long topic
information.

A topic name in a Subscribe message may include wild-
cards, e.g., a topic “foo/bar/#” matches all topics starting with
“foo/bar”. The broker sends a Suback message with a specific
topic ID 0x0000 in this case. Then, when the broker receives
a first Publish message of a topic matching the wildcards, it
sends a Register message to the subscriber to notify the topic
ID. Subsequently, the broker forwards messages of the topic
to the subscribers.

In MQTT-SN, a publisher can specify some parameters for
each Publish message, such as the QoS level. A higher QoS
level involves re-transmission as needed for reliable delivery,
while QoS level 0 does not retry with the emphasis on
lightweight communication. Besides, a publisher can also set
Retain flag. If it is set to “true”, the Publish message is stored
on the broker and will be sent to a new subscriber.

B. P4

P4 [13] is a programming language for the data plane of
network devices. Conventional software-defined networking
(SDN) techniques have a limitation in that the data plane is not
programmable. Thus, new protocols and original protocols are
not capable of controlling. P4 breaks through this limitation,
i.e., it gives programmability to the data plane.

Figure 1 shows the overview of P4. A program written in
P4 is converted to a binary specific to a target device by a
P4 compiler. By deploying the binary onto the target device,
users can run it with their own parser, match-action pipeline,
and deparser. Same as conventional SDN like OpenFlow [18],
information required for controlling packets, such as table
entries, are registered through the control plane.

C. Architecture of PAMS

PAMS makes a network switch perform a part of broker
functionality. We assume the switch is placed where all
messages between the broker and clients pass, as shown in
Figure 2. When receiving a Publish message, it checks whether
existing subscribers are interested in the topic of the message.

Publisher

Broker

Subscriber

P4 switch

• Topic matching
• Message forwarding

Fig. 2. Assuming architecture of PAMS

Packet-in

Update table entries

PUBLISH

Publisher Broker Subscriber Controller

Topic
matching

P4 switch

PUBLISH

SUBSCRIBESUBSCRIBE

Topic
matching

PUBLISH

PUBLISH PUBLISH

w/o PAMS

w/ PAMS

SUBACK
SUBACK

SUBSCRIBESUBSCRIBE

SUBACK

SUBACK

PUBLISH

Fig. 3. Difference between with and without PAMS

If so, it forwards the message directly to the correspond-
ing subscribers with rewriting the source information, the
publisher, into the broker. Thereby the load of the broker
decreases.

Figure 3 shows the basic sequence. Note that we omit some
kinds of messages like Connect since they are not essential
in showing the fundamental difference between with and
without PAMS. In the regular sequence, i.e., without PAMS,
all messages are processed by the broker. Contrarily, with
PAMS, the switch processes a part of messages. We explain
what kind of messages are subjected to in-network processing
later. When the switch receives some kinds of MQTT-SN
messages such as Suback, it sends a packet-in message to the
controller. Subsequently, the controller updates table entries
in the switch so that it holds correspondence between topics
and subscribers. After that, if a Publish message received by
the switch has a topic that the table entries include, the switch
forwards the message directly to the corresponding subscribers
with rewriting the source information into the broker.

Receive
SUBSCRIBE,

UNSUBSCRIBE
Receive PUBLISH

Receive
SUBACK,
REGISTER

Dest =
Broker?

Src =
Broker?

Direct forwarding
towards subscribers

QoS = 0
&

Retain = 0?

Dest =
Broker?

Yes Yes Yes

Yes

No

No

NoNo

Send to controller
(Packet-in)

Matching
entry

found?

Yes

No

Regular
Forwarding

Receive
DISCONNECT

End

Rewrite Src

Fig. 4. Handling MQTT-SN messages in P4 switch

D. Acceleration behavior

Since the broker maintains state information for various
processes like re-transmission according to the QoS level,
in-network acceleration should avoid affecting it. Therefore,
PAMS processes MQTT-SN messages within the switch in
a manner that does not influence such state information
maintained by the broker. Specifically, it targets only Publish
messages with QoS level 0 and Retain flag “false”.

Figure 4 shows processes in the switch. A Publish message
satisfying the conditions, i.e., QoS level is 0 and Retain flag is
“false”, is checked if the topic in the header matches an entry
in the table that maintains the correspondence between topics
and subscribers. If there exists a matching entry, the switch
rewrites the source information of the Publish message into
the broker and then forwards it directly to the corresponding
subscribers. Otherwise, it is ordinarily forwarded and handled
by the broker as regularly. Besides, the switch sends a packet-
in message to the controller when it receives a Subscribe,
Unsubscribe, Suback, Register, and Disconnect message.

Within the controller, messages are handled according to
the flow shown in Figure 5. The controller basically maintains
the following three kinds of tuples:

• 〈Short topic name, Subscribers〉
• 〈Topic ID, Topic name, Subscribers〉
• 〈Wildcard topic name, Subscribers〉

These tuples are information of correspondence between a
topic and its subscribers. Since a Publish message has a topic
ID (including a pre-defined topic ID) or a short topic name
as described in Section III-A, the controller generates table
entries with them. Namely, the generated rules determine the
switch behavior as follows; if a Publish message includes
a specific topic ID or short topic name in its header, the
switch rewrites the source information into the broker and
forwards it to the corresponding subscribers. The above tuples

Receive
SUBSCRIBE

(Dest: Broker)

Receive
SUBACK

(Src: Broker)

Receive
REGISTER

(Src: Broker)

Receive
UNSUBSCRIBE
(Dest: Broker)

Receive
DISCONNECT

Delete corresponding
entries in P4 switch

Delete corresponding
information

Include
wildcards?

Yes
No

Extract
information

Extract
information

Update
table entries
in P4 switch

ReturnCode
= 0x00?

Yes
No

Delete
corresponding

information

Disable
corresponding entries

Enable
corresponding entries

Matching
wildcards

exist?
Yes

No

End

Fig. 5. Behavior of controller

are for managing such correspondence between a topic and
the destination subscribers.

When the controller receives a Subscribe message, it ex-
tracts topic information Ts (short topic name, topic ID, or
topic name), message ID Ms, and source information Ss (IP
address and port number).

When the controller receives a Suback message, it first
checks the return code. If it is not 0x00, the controller discards
the information of corresponding Ts,Ms, and Ss because it
means the broker rejects the subscribe request. Otherwise, the
controller extracts topic information Ta with its type, message
ID Ma, and source information Sa. It then creates or updates
a tuple according to the type of Ta: 〈Ta, {Sa, ...}〉 for a short
topic name, 〈Ts, {Sa, ...}〉 for the specific topic ID 0x0000,
or 〈Ta, Ts, {Sa, ...}〉 for any other topic ID. Ts is a wildcard
topic name in the second case, whereas it is a normal topic
name in the third case. The association between Ts and Ta can
be determined by the identity of message IDs Ms and Ma.

Afterward, if Ta is equal to 0x0000, i.e., the corresponding
Subscriber message has a topic name with wildcards, it
disables all table entries that match the wildcards. If Ta is not
0x0000, it updates table entries in the switch according to the
above tuples. That is, it embeds the following forwarding rule;
if the header of a Publish message has the topic information
equal to Ta, then forwards the Publish message to Sa in
addition to the existing subscribers.

In the above, the reason why disabling all table entries for a
wildcard topic name is to allow the broker to issue a Register
message. As mentioned in Section III-A, the broker sends a
Register message to the subscriber to notify the topic ID. If
the related table entries are enabled, Publish messages of the
topic ID are processed in the switch and do not reach the
broker. Hence, all table entries related to a wildcard topic
name are required to be disabled. Note that this behavior does
not significantly influence performance because once a new
Publish message arrives at the broker, a Register message is

issued that triggers enabling the table entries again.
Upon receiving a Register message from the broker, the

controller checks if it is sent in response to a Subscribe
message with wildcards. If so, and if there are disabled related
table entries, it enables them.

When the controller detects a breakaway of a subscriber
from a topic by receiving an Unsubscribe message or a
Disconnect message, it deletes corresponding table entries in
the switch and then deletes related information.

IV. EVALUATION

To confirm the effectiveness of PAMS, we evaluate the la-
tency and the number of packets by analyzation of a queueing
network model and emulation with Mininet [19].

A. Analytical evaluation of latency

We assume a Jackson network [20], a well-known queueing
network class, considering the outgoing interface in each
publisher, switch, broker, and subscriber in Figure 2 has a
queue.

We also make the following assumptions.
• The number of publishers: n
• The number of subscribers: 1
• The average arrival rate of each publisher: λ messages

per second
• The average service rate of each node: µ messages per

second
• The average acceleration rate: ω

Note that the acceleration rate indicates the ratio of Publish
messages subjected to in-network processing to the total
number of Publish messages.

Figure 6 shows the assuming model. We denote a publisher
NP

i , a broker NB
1 , and a switch NS

1 and NS
2 , where the former

is the outgoing interface for non-acceleration and the latter for
acceleration. The arrival rates of NS

1 and NB
1 are λ(1− ω)n,

and that of NS
2 is λn. Hence, the expected waiting time from

a publisher to the subscriber E[W] is

E[W] = ω

{
1

µ− λ
+

1

µ− λn

}
+(1− ω)

{
1

µ− λ
+

1

µ− λ(1− ω)n

+
1

µ− λ(1− ω)n
+

1

µ− λn

}
=

1

µ− λ
+

2(1− ω)
µ− λ(1− ω)n

+
1

µ− λn
.

Figure 7 shows the impact of n and ω on latency, calculated
by the above equation. We set parameters as follows; λ is one
message per second, and the service rate of each queue is
12, 207.03125 messages per second based on the assumption
that the size of each message is 10 KBytes and the network
bandwidth is 1 Gbps. Although it is a simplified model for
grasping the tendency, the figure shows that PAMS could
reduce the latency compared to not using it, i.e., in the
ω = 0 case. A larger number of publishers tends to involve

𝑁𝑁1𝑃𝑃

𝑁𝑁𝑛𝑛𝑃𝑃

𝑁𝑁1𝑆𝑆 𝑁𝑁1𝐵𝐵

𝑁𝑁𝑖𝑖𝑃𝑃

：

：

𝜆𝜆

𝜆𝜆

𝜆𝜆
𝑁𝑁2𝑆𝑆

𝑃𝑃𝑁𝑁1𝑆𝑆,𝑁𝑁1𝐵𝐵
= 1.0

𝑃𝑃𝑁𝑁1𝐵𝐵,𝑁𝑁2𝑆𝑆
= 1.0

𝑃𝑃𝑁𝑁2𝑆𝑆,𝑁𝑁0 = 1.0

𝑃𝑃𝑁𝑁𝑖𝑖𝑃𝑃,𝑁𝑁1𝑆𝑆
= 1 − 𝜔𝜔 𝑖𝑖 = 1,2, … ,𝑛𝑛

𝑃𝑃𝑁𝑁𝑖𝑖𝑃𝑃,𝑁𝑁2𝑆𝑆
= 𝜔𝜔 𝑖𝑖 = 1,2, … ,𝑛𝑛

Fig. 6. Queueing network model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ex
pe

ct
ed

 ti
m

e
in

 sy
st

em
 [m

s]

Acceleration rate ω

n=10000

n=8000

n=6000

n=4000

n=2000

Fig. 7. Expected latency with PAMS

a more significant decrement amount. For 10, 000 publishers,
the acceleration rate ω of 0.4 approximately halves the latency.

B. Experimental evaluation

We conducted experiments by emulation environment with
Mininet [19]. The network topology includes a publisher,
broker, subscriber, and P4 switch, as shown in Figure 8. We
use BMv2 [21] for P4 switch and Mosquitto RSMB [7] for
the broker. Client implementations are based on MQTT-SN
Tools [22]. For the measurement of the number of packets,
we use Wireshark. The Mininet environment runs on Ubuntu
16.04.7LTS on Oracle VirtualBox. The virtual machine is as-
signed two cores and 2GB memory on a desktop computer that
has Intel Core i5-10400 CPU, 32GB memory, and Windows
10 Pro OS. Table I lists the software versions.

1) Number of packets: We measured the number of packets
on each node. Specifically, we obtained the numbers of packets
sent from the publisher, received by the broker, and received
by the subscriber with Wireshark. The subscriber subscribes to
a topic in advance. The publisher sends 100 Publish messages
with the same topic at one-millisecond intervals. The packet
size of each Publish message is 100 bytes, QoS level is set to
0, and Retain flag is set to false. Measurement of the number

P4 switch
（BMv2）

Publisher SubscriberBroker

Mininet

Fig. 8. Network topology in Mininet

TABLE I
SOFTWARE VERSIONS

Software Version
Mosquitto RSMB 1.3.0.2
mqtt-sn-tools 0.0.6
BMv2 1.13.0
Mininet 2.3.0
Wireshark 2.6.10
VirtualBox 6.1.12

of packets includes messages other than Publish, like Connect
and Subscribe.

Figure 9 shows the result. The numbers of packets of
the publisher and subscriber are almost the same with and
without PAMS. On the other hand, regarding the broker, PAMS
significantly reduces the number of packets. This is because
Publish messages are processed in the P4 switch and do not
reach the broker.

Although the actual effectiveness depends on the ratio of
in-network acceleration, it is confirmed that PAMS can lower
the load of the broker while it does not influence the behavior
of clients from the result.

2) Latency: We also measured the latency from the pub-
lisher to the subscriber. Each Publish message has a time stamp
of packet transmission time in microseconds in its payload. We
obtain the latency by calculating the difference between the
above time stamp and packet reception time in the subscriber.

The publisher sends 10, 000 Publish messages with the same
topic at one-millisecond intervals. The packet size of each
Publish message is adjusted to 100 or 200 bytes by padding,
QoS level is set to 0, and Retain flag is set to false.

Figure 10 shows the result for each packet size 100 and
200 bytes. PAMS reduces both the average and median of the
latency. In PAMS, Publish messages subjected to in-network
processing skip over the broker, and thus the latency could be
lower. When not using PAMS, the difference between average
and median values is relatively significant, i.e., the latency
seems to vary widely. Since PAMS enables skipping over
the process in the broker software, it is expected to suppress
variations as well as reduce latency.

V. CONCLUSION

In this paper, we propose PAMS as an in-network ac-
celeration method of the MQTT-SN protocol by P4. PAMS

0

20

40

60

80

100

120

Broker Publisher Subscriber

N
um

be
r o

f p
ac

ke
ts

w/ PAMS w/o PAMS

Fig. 9. The number of packets with and without PAMS

0

500

1000

1500

2000

Average Median Average Median

100 bytes 200 bytes

La
te

nc
y

[μ
s]

w/ PAMS w/o PAMS

Fig. 10. Latency from publisher to subscriber

makes a network switch perform a part of broker functionality,
i.e., forwarding Publish messages based on topic matching.
From analytical and experimental evaluation, it is clarified that
PAMS can lower the broker load by suppressing the number
of Publish messages processed in the broker and reducing the
latency.

Future work includes experimental evaluation with a hard-
ware switch instead of BMv2. BMv2 is a software switch
mainly for verifying purposes, so it is not easy to clarify
the practical efficiency of PAMS. We plan to experiment
with a hardware switch supporting P4 and clarify the actual
performance for IoT data.

ACKNOWLEDGMENT

We are grateful to Tomoya Hibi for helpful discussions.

REFERENCES

[1] F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in industry
4.0: A review of the concept and of energy management approached in
production based on the internet of things paradigm,” in Proc. IEEE
International Conference on Industrial Engineering and Engineering
Management, 2014, pp. 697–701.

[2] M. van Geest, B. Tekinerdogan, and C. Catal, “Design of a reference ar-
chitecture for developing smart warehouses in industry 4.0,” Computers
in Industry, vol. 124, p. 103343, 2021.

[3] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s — a pub-
lish/subscribe protocol for wireless sensor networks,” in Proc. Interna-
tional Conference on Communication Systems Software and Middleware
and Workshops, 2008, pp. 791–798.

[4] A. Stanford-Clark and H. L. Truong, MQTT For Sensor Networks
(MQTT-SN) Protocol Specification Version 1.2, IBM Corporation, 2013.

[5] MQTT, https://mqtt.org/ (accessed Aug. 24, 2022).

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114–131, 2003.

[7] RSMB: Really Small Message Broker, https://github.com/eclipse/
mosquitto.rsmb (accessed Aug. 24, 2022).

[8] E. Longo, A. E. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni,
“Mqtt-st: a spanning tree protocol for distributed mqtt brokers,” in Proc.
IEEE International Conference on Communications, 2020, pp. 1–6.

[9] A. Detti, L. Funari, and N. Blefari-Melazzi, “Sub-linear scalability
of mqtt clusters in topic-based publish-subscribe applications,” IEEE
Transactions on Network and Service Management, vol. 17, no. 3, pp.
1954–1968, 2020.

[10] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissemination
of edge-heavy data on heterogeneous mqtt brokers,” in Proc. IEEE
International Conference on Cloud Networking, 2017, pp. 1–7.

[11] R. Banno, J. Sun, S. Takeuchi, and K. Shudo, “Interworking layer
of distributed mqtt brokers,” IEICE Transactions on Information and
Systems, vol. E102.D, no. 12, pp. 2281–2294, 2019.

[12] W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “mumq: A
lightweight and scalable mqtt broker,” in Proc. IEEE International
Symposium on Local and Metropolitan Area Networks, 2017, pp. 1–6.

[13] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, p. 87–95,
2014.

[14] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, and D. Timmermann,
“Realizing content-based publish/subscribe with p4,” in Proc. IEEE
Conference on Network Function Virtualization and Software Defined
Networks, 2018, pp. 1–7.

[15] R. Kundel, C. Gärtner, M. Luthra, S. Bhowmik, and B. Koldehofe, “Flex-
ible content-based publish/subscribe over programmable data planes,”
in Proc. IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1–5.

[16] J. Vestin, A. Kassler, S. Laki, and G. Pongrácz, “Toward in-network
event detection and filtering for publish/subscribe communication using
programmable data planes,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 415–428, 2021.

[17] A. Alshantout and L. Al-Awami, “Enhancing mqtt-sn performance via
fountain codes in extreme conditions,” in Proc. International Wireless
Communications Mobile Computing Conference, 2019, pp. 1184–1189.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, p. 69–74, 2008.

[19] Mininet, http://mininet.org/ (accessed Aug. 24, 2022).
[20] J. R. Jackson, “Jobshop-like queueing systems,” Management science,

vol. 10, no. 1, pp. 131–142, 1963.
[21] BEHAVIORAL MODEL (bmv2), https://github.com/p4lang/behavioral-

model (accessed Aug. 24, 2022).
[22] MQTT-SN Tools, https://github.com/njh/mqtt-sn-tools (accessed Aug.

24, 2022).

