IEICE

TRANSACTIONS

on Information and Systems

VOL. E105-D NO. 2
FEBRUARY 2022

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

IEICE TRANS. INE. & SYST., VOL.E105-D, NO.2 FEBRUARY 2022

333

[PAPER

Trail: An Architecture for Compact UTXO-Based Blockchain and

Smart Contract

Ryunosuke NAGAYAMA ™, Nonmember, Ryohei BANNO™**, and Kazuyuki SHUDO®, Members

SUMMARY In Bitcoin and Ethereum, nodes require a large storage
capacity to maintain all of the blockchain data such as transactions. As of
September 2021, the storage size of the Bitcoin blockchain has expanded to
355 GB, and it has increased by approximately 50 GB every year over the
last five years. This storage requirement is a major hurdle to becoming a
block proposer or validator. We propose an architecture called Trail that al-
lows nodes to hold all blocks in a small storage and to generate and validate
blocks and transactions. A node in Trail holds all blocks without transac-
tions, UTXOs or account balances. The block size is approximately 8 kB,
which is 100 times smaller than that of Bitcoin. On the other hand, a client
who issues transactions needs to hold proof of its assets. Thus, compared
to traditional blockchains, clients must store additional data. We show that
proper data archiving can keep the account device storage size small. Then,
we propose a method of executing smart contracts in Trail using a threshold
signature. Trail allows more users to be block proposers and validators and
improves the decentralization and security of the blockchain.

key words: blockchain, storage consumption, accumulator

1. Introduction

A blockchain is a distributed system with Byzantine fault
tolerance. Because blockchain technology can manage a
distributed ledger without a centralized system and makes
tampering with past data difficult, it is used as the core tech-
nology for cryptocurrencies. In major blockchains such as
Bitcoin [1], [2] and Ethereum [3], [4], a node validates each
received transaction and generates a block from the transac-
tion if it is valid. The node then broadcasts the block, and
the receiving node validates the block and the transactions
contained in it. In the transaction validation process, the
nodes validate that the sender has the balance to be remitted
in the transaction.

The security and decentralization of a blockchain
improve as the number of nodes increases. Today’s
blockchains require much computational resources to op-
erate a node and it is the obstacle to boot up a new node.
A node must equip considerable hash calculation power to
support a Proof-of-Work blockchain such as Bitcoin. A
Proof-of-Stake blockchain such as Ethereum 2.0 does not
require much calculation power but still require a large
amount of storage. The data size of a blockchain is enor-

Manuscript received June 24, 2021.
Manuscript revised September 27, 2021.
Manuscript publicized November 9, 2021.
"The authors are with the School of Computing, Tokyo Insti-
tute of Technology, Tokyo, 152—8552 Japan.
*Presently, with Yahoo Japan Corporation.
“Presently, with Kogakuin University.
a) E-mail: shudo@is.titech.ac.jp
DOI: 10.1587/transinf.2021EDP7139

mous because it includes all transactions or balances of all
accounts. As of September 2021, the storage size of the
Bitcoin blockchain has expanded to 355 GB, and it has in-
creased by approximately 50 GB every year over the last five
years [5]. The situation of Ethereum is similar to Bitcoin
and the full data size of Ethereum reached 980 GB. Such
a storage requirement is too high for embedded computers
and smart devices. A blockchain has to overcome the stor-
age problem to obtain number of node beyond server-class
computers.

We propose the Trail architecture in which account bal-
ances are managed in the same way as unspent transac-
tion outputs (UTXOs) using the TXO approach. TXOs are
stored in a data structure called a TXO tree. The TXO tree
is used to manage whether a TXO is used or unused and
transactions contain Merkle proofs for TXOs; thus, nodes
do not require past transactions and TXOs for validation.
Furthermore, a node can generate a block from only the par-
ent block and new transactions; therefore, the storage size
for nodes is small.

The Trail architecture has the following advantages:

e Nodes do not store transactions, UTXOs and account
balances; they store only blocks.

e A user can prove its balance to the other users without
relying on nodes.

e The block size is only 8 kB and is constant regardless
of the number of transactions.

e Trail does not depend on a specific consensus algo-
rithm or any kind of fork choice rule.

Note that Trail itself does not fix performance, scalability
and security including incentive model, though a consensus
algorithm used in a Trail based blockchain dominates them.

This paper is an extended version of our previous
work [6]. This paper shows such TXOs are treated in case
the TXOs are approved and used in the same block in
Sect.6.1. In addition, we propose a method of executing
smart contracts based on the Trail architecture.

The rest of this paper is organized as follows: Sect.?2
introduces related work on reducing blockchain storage.
Section 3 describes major approaches to asset ownership
management in blockchain. In Sect.4, an overview of the
Trail architecture is presented, and in the following three
sections from 5 to 7, details are presented. Section 5 de-
scribes the synchronization of the blockchain. Section 6
presents methods of reducing the size of broadcast data.
Section 7 describes data archiving to reduce client stor-

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

334

age demands. Section 8 describes extensions for execut-
ing smart contracts based on the Trail architecture. Finally,
Sect. 9 presents the conclusion of this study.

2. Related Work

This section describes existing research that has attempted
to reduce the storage size for blockchain.

Nakamoto [1] proposed pruning the Merkle tree. In
Bitcoin, transactions that have been buried under a sufficient
number of blocks are difficult to overturn. Therefore, nodes
can save storage space by summarizing old transactions into
a hash value of a parent node and discarding the transac-
tions themselves. L. Quan et al. [7] analysed the distribution
of the period from the approval of a UTXO to its use and,
based on that analysis, proposed a method of properly dis-
carding transactions. In these methods, a node needs to hold
transactions for a certain period of time, and the node de-
cides when to discard them. In Trail, nodes do not need
to store any transactions, and balance management and data
discarding are the responsibility of the owner of the balance.

Simplified payment verification (SPV) [1] and the light
client protocol [8] are methods being researched by the Bit-
coin and Ethereum communities. These methods allow
clients to validate blocks using the Merkle proofs of trans-
actions. However, these methods still require block pro-
posers to store transactions and account balances, whereas
in Trail, block proposers do not need to keep transactions
and account balances. Furthermore, clients in Trail keep the
Merkle proofs of their balances, so they can validate blocks
in the same way as in these methods.

The stateless client concept [9] refers to a method in
which validators need to keep only blocks containing the
tree root. In current research, stateless clients can validate
blocks but cannot generate blocks. Trail makes it possible
for nodes to validate and generate blocks without storing
data other than blocks by adding the information required
for the verification and generation of a block to the transac-
tions.

Utreexo [10] is a method of managing account assets
using a Merkle forest, in which the leaf nodes are TXOs.
Including the Merkle proof of a TXO in a transaction allows
the TXO to be added to/deleted from the Merkle forest and
enables nodes to validate transactions and generate blocks.
In Utreexo, only unused TXOs become leaf nodes, so TXOs
approved and used in the same block are not recorded in any
blocks. On the other hand, Trail records all past TXOs.

Omniledger [11] reduces storage demand and improves
throughput by means of sharding. Each shard is randomly
assigned to validators periodically. When a client issues a
transaction between different shards, the associated shards
either commit or abort the transaction, and an aborted trans-
action is rolled back on each shard. Ethereum will also im-
plement sharding [12]. Validators are randomly assigned,
and each shard periodically commits blocks to the beacon
chain, the blockchain that manages all shards.

In the pegged sidechain approach[13], another

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.2 FEBRUARY 2022

Transaction

Input Output
Alice Alice
50 BTC 10 BTC
Alice Bob
20 BTC 60 BTC

Fig.1 A transaction sending 60 BTC from Alice to Bob.

blockchain called a sidechain is created, which issues cur-
rency that can be exchanged with the Bitcoin blockchain. A
transaction is issued in both blockchains, and the transaction
is validated using SPV. This method reduces the storage de-
mand by dividing the ledger and improves throughput, sim-
ilar to sharding.

Vault[14] is a method of reducing storage demand
through sharding. In Vault, the balance of each account is
stored in a Merkle tree, and each node is assigned to hold a
part of the Merkle tree. Adding a Merkle proof to a transac-
tion allows a node to validate and generate a block even if
the node possesses only part of the Merkle tree. However,
Vault requires the nodes to hold some of the leaf nodes and
intermediate nodes of the Merkle tree. In Trail, nodes do not
store transactions: they store the root and only one Merkle
proof of the Merkle tree per block by using the TXO tree.

3. Asset Ownership Management in Blockchain

Our proposal, Trail is a UTXO-based blockchain. This sec-
tion describes UTXO-based blockchain briefly to present re-
quired background.

There are two main methods of ownership management
of assets in a blockchain: account-based and UTXO-based
management.

Ethereum is an account-based blockchain. Account-
based blockchains record the assets of all accounts in each
block: an account and its assets are recorded in the block as
one node in the Merkle tree. Validators check past blocks
to confirm whether an account holds the balance sent in the
current transaction.

By contrast, Bitcoin is a UTXO-based blockchain. A
UTXO records the address of the owner and the number of
coins. An account holds one or more UTXOs, and the to-
tal amount of the UTXOs represents the total assets of the
account.

As shown in Fig. 1, a transaction consumes one or
more UTXOs as input and creates one or more new UTXOs
as output. The depicted transaction consumes a 50 BTC
UTXO and a 20 BTC UTXO from Alice and creates a 10
BTC UTXO belonging to Alice and a 60 BTC UTXO be-
longing to Bob. If the transaction is approved, the assets of
Alice decrease from 70 BTC to 10 BTC, and the assets of
Bob increase by 60 BTC. As a result, 60 BTC is sent from
Alice to Bob. The approved transaction is recorded in the
block as one node in the Merkle tree. A validator checks
past blocks to confirm whether any UTXO in the transac-

NAGAYAMA et al.: TRAIL: AN ARCHITECTURE FOR COMPACT UTXO-BASED BLOCKCHAIN AND SMART CONTRACT

tion input has been used as a transaction input in the past;
it is illegal to use a UTXO as a transaction input multiple
times.

Trail is also a UTXO-based blockchain; however, it
records whether a UTXO was used as an input in the past
in a different way than Bitcoin. Bitcoin creates a Merkle
tree with transactions as leaf nodes and records the tree in
blocks, while Trail records Merkle trees with UTXOs as leaf
nodes in blocks.

4. Overview of the Trail Architecture

This section describes the design of the Trail architecture. In
the following, we use the terms “Trail node” and “client”. A
client simply issues a transaction. A Trail node validates
transactions and blocks and generates blocks. A Trail node
is usually also a client. Moreover, the nodes in the tree struc-
ture are simply called “nodes”.

Since clients include proofs of their assets in transac-
tions, Trail allows Trail nodes to validate transactions and
generate blocks with minimal data storage. A simulator
implementing the Trail architecture has been released on
GitHub'.

4.1 TXO Tree

First, we describe the TXO tree, which is the core concept
of Trail. The TXO tree is a Merkle tree with leaf nodes that
store the hash values of all TXOs approved in the past blocks
in the blockchain in such a way that it can be determined
whether a TXO has been used. In Bitcoin, a new Merkle
tree is created for each block, while Trail updates a single
TXO tree through the blockchain and records a root of the
current TXO tree in the current block: no Trail node store
the entire TXO tree. A TXO and its Merkle proof are held
only by the client who is the owner of the TXO, and each
Trail node holds only the root of the TXO tree, one hash
value and one Merkle proof. As shown Fig. 2, a client holds
only one part of the TXO tree that is related to its own TXO,

TXO tree

TX(;
A client keeps own TXOs
and its Merkle proof.
Client A Client B Client C
"/E”Xl "/E”\l I__‘I/‘:”\"
'/El 5‘\" '/El

Fig.2 Concept of the Trail architecture: The node with a thick border
in the TXO tree is the rightmost leaf node, and the grey nodes are Merkle
proofs for the rightmost leaf node.

Thttps://github.com/nagayamaryu/trail_simulator

335

and a Trail node holds only the root of the TXO tree, the
hash value of the rightmost leaf node and its Merkle proof.

A TXO tree is a perfect binary Merkle tree, and the leaf
nodes of the TXO tree store the hash values of TXOs or null
hash values. When new TXOs are accepted, leaf nodes that
are still null are assigned to these TXOs from left to right.
A null value for a leaf node indicates that a TXO has not yet
been assigned to this leaf node. If the new TXO is unused,
the fixed-length hash value hash(7XO0) of the TXO is stored
in the corresponding leaf node. On the other hand, when
a TXO is used, the corresponding leaf node contains the
hash value hash(7X0?), which is the hash value of a con-
catenated binary of the TXO. Specifically, hash(h?) repre-
sents the hash value of the binary formed by concatenating
two copies of the binary of b. If the binary of a TXO is n
bytes, then when the TXO is used, the value obtained by
multiplying the hash function by a binary of 2n bytes, that
is, the concatenation of two TXO binaries, is stored in the
leaf node.

The root of the TXO tree, the index of the rightmost
leaf node to which a TXO is assigned, and its hash value
and Merkle proof are recorded in the block.

A node in the TXO tree is uniquely determined by an
identifier called the branchID. The branchID is a concatena-
tion of the height and the index from the left in the height.
For example, if the height of the TXO tree is 28 = 256, the
branchlID is 33 bytes; the first 1 byte represents the height
of the node, and the remaining 32 bytes represent the in-
dex from the left in that height. Let branchID(%, i) be the
branchID of the ith node from the left in height 4.

4.2 Generation of a Transaction by a Client

The data structures of a TXO and a transaction are shown in
Tables 1 and 2, respectively.

Clients store their own TXOs and the update histories
of their Merkle proofs. A transaction must be generated by
clients who consider the same block to be the latest block.

Table1 Data fields of a transaction output (TXO).
Field Description Size
Index Index of the corresponding leaf node. 32 bytes
ParentBlock Hash value of the parent block of 32 bytes
the block that added this TXO to the
TXO tree.
OwnerAddress Address of the owner of this TXO. 32 bytes
Balance Asset amount. 32 bytes
Table 2 Data fields of a transaction.
Field Description Size
BlockHash ~ Hash value of the block on which proofs of 32 bytes

this transaction are based.

Inputs List of unused TXOs and their Merkle
proofs. A Merkle proof is an array of 255
hash values.

Outputs List of new TXOs.

Sigs Signatures of accounts who own TXOs in
Inputs or Outputs.

336

Algorithm 1: Validation of a transaction.

Input: A transaction tx, the latest block By, valid
transactions Tx, ;s
if tx.BlockHash # hash(Bjues;) then
| return False
end

TXyatid
if tx.Inputs N U tx,.Inputs # () then
| return False
end
for TXO, Proof € tx.Inputs do
if Proof is empty then
TXyalia
if TXO ¢ tx,.Outputs then
| return False
end
else

if Proof is invalid then
| return False

end
end
end
tx.Inputs tx.Outputs
if TXO.Balance < Z TXO.Balance then
| return False
end

return True

Otherwise, nodes cannot validate the transaction and the
transaction is not approved. A client can check the Merkle
proof of another client if it has the root of the TXO tree of
the latest block. For example, when checking whether a cer-
tain TXO is unused, a client checks whether the root value of
the Merkle tree calculated from the hash value of the TXO
and its Merkle proof matches the root value of the TXO tree
of the latest block. If it does not match, then either the TXO
has been used, the TXO has not yet been approved, or the
Merkle proof is invalid. However, a Merkle proof is not re-
quired when using an unapproved TXO as an input TXO.

If all TXOs in Inputs are unused and the Merkle proof
is correct, then the client creates Outputs such that the total
amount is less than or equal to the total amount of Inputs
minus the fee. At this time, no one knows which leaf node
of the TXO tree the TXO will be assigned to, so the Index
of the TXO in Outputs is empty.

Afterwards, the client broadcasts the transaction.

4.3 Validation of a Transaction by Trail Nodes

Trail nodes validate received transactions and generate
blocks from valid transactions. A node validates a trans-
action by checking the following four conditions as shown
in Algorithm 1.

e BlockHash of the transaction is the same as the block
that the node considers as the latest block.

e TXOs in Inputs of the transaction are not included in
Inputs of other valid transactions.

e The root value calculated based on hash values and

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.2 FEBRUARY 2022

Merkle proofs of TXOs in Inputs of the transaction is
the same as the root value of the TXO tree of the latest
block.

e The total amount of Outputs of the transaction is less
than or equal to the total amount of Inputs of the trans-
action minus the fee.

The validator does not need all past blocks to validate
whether a TXO was previously used.

4.4 Update of the Merkle Proof in a Transaction by Trail
Nodes

When a new block is created, the TXO tree may be updated
before a valid transaction is included in the block. In this
case, the Merkle proof in the transaction will no longer be
valid and cannot be included in the block.

For example, consider two transactions containing the
Merkle proof of the TXO tree of block n, Ty and T,. If T is
contained in child block n+ 1 of block n, then the node of the
TXO tree will be updated. Therefore, the root of the TXO
tree of block n + 1 and the root of the Merkle tree calculated
from the TXO and its Merkle proof in transaction 7, will not
match because the root of the Merkle tree calculated from
the TXO and its Merkle proof in transaction 7, correspond
to the root of the TXO tree of block n. Therefore, T, cannot
be included in block n+2 because it is not a valid transaction
for block n + 1.

Thus, for a pending transaction, the Trail node needs to
update the Merkle proof in the transaction. The proof can be
updated based on the information of the approved transac-
tion in the blocks generated during the pending transaction
because the hash value of the updated node of the TXO tree
can be calculated from the information contained in those
transactions.

The client does not include the Merkle proof when
signing a transaction, as the Trail node may update the
Merkle proof.

The process of the update of the Merkle proof by a Trail
node is similar to the method proposed for Vault [14].

4.5 Generation of a Block by a Trail Node

The data structure of a block is shown in Table 3. The block
size is 8288 bytes, which is approximately one hundredth of
the block size in Bitcoin [15].

In the block generation process, the Trail node com-
putes the new root of the TXO tree. First, hash values are as-
signed to leaf nodes (height 0) of the TXO tree in the follow-
ing order: Merkle proofs in Inputs; RightmostProof; Right-
mostHash; hash values of TXOs in Outputs, hash(7X0); and
hash values of TXOs in Inputs, hash(TXOz).

The TXOs in Outputs of all valid transactions are as-
signed in order from the leaf node of RightmostIndex+1
without gaps. At this time, the Index values of the TXOs
in Outputs are fixed. Therefore, the hash value of each TXO
in Outputs, including the Index value, is assigned to a leaf

NAGAYAMA et al.: TRAIL: AN ARCHITECTURE FOR COMPACT UTXO-BASED BLOCKCHAIN AND SMART CONTRACT

337

D7 NS LA N A N,
; i] ; i P T
; i oI P | i i i
i i] : i i i

[xe][[[o [o J[ro][~]!

. N
B L

8 9 10 11 12 13 14 15

Fig.3 Example of assigning hash values to a TXO tree from transaction and parent block data: Node
T is assigned the hash value of a TXO in Inputs. Node IP is assigned the hash value of the corresponding
Merkle proof in Inputs. Node R is assigned the RightmostHash of the parent block. Node RP is assigned
the RightmostProof of the parent block. Nodes O are assigned the hash values of TXOs in Outputs.
Node RO is the rightmost node that is assigned the hash value of a TXO in Outputs. Node N is assigned
a null hash value. The nodes indicated by dashed boxes are initially assigned no hash value. The
block proposer computes the hash values of the parent nodes along the thick lines between nodes. The
numbers beside the nodes are the indexes of the nodes at that height.

Table3 Data fields of a block.
Field Description Size
Parent Hash value of the parent block. 32 bytes
Root Root of the TXO tree. 32 bytes

RightmostIndex
Index of the rightmost leaf node to 32 bytes
which a TXO is assigned.

RightmostHash
Hash value of the leaf node corre- 32 bytes
sponding to RightmostIndex.

RightmostProof
Merkle proof of the leaf node corre- 25532 bytes
sponding to RightmostIndex.

node. Since the TXOs in Inputs are used, the hash value
flagging a TXO as used, hash(TX0?), is assigned to each
corresponding leaf node. Furthermore, RightmostHash is
assigned to the leaf node whose index is RightmostIndex.

Note that hash values are assigned to only a portion of
the leaf nodes. The block proposer computes the hash value
of the parent node from the hash values assigned to the leaf
nodes. Hash values are always assigned to the sibling nodes
of leaf nodes to which hash values are assigned, except the
rightmost leaf node. If a hash value is not assigned to the
sibling node of the rightmost node, then the hash value of
the parent node is computed under the assumption that a
null hash value is assigned to that sibling node.

Then, hash values are assigned to the nodes at height
1 in the following order: Merkle proofs in Inputs, Right-
mostProof, and hash values computed from the leaf nodes.
Sibling nodes of nodes to which hash values have been as-
signed, except the rightmost node, are always assigned hash
values. If a hash value is not assigned to the sibling node of
the rightmost node, then hash(hash(null)?) is assigned, and
the Trail node computes the hash value of the parent node.

Similarly, hash values are assigned to the nodes at
height # + 1 in the following order: Merkle proofs in Inputs,
RightmostProof, and hash values computed from the nodes

at height 4. Additionally, the block proposer computes the
hash values of the nodes at height % + 1. Finally, the block
proposer obtains a new root of the TXO tree.

The block proposer generates a new block with the in-
dex of the rightmost leaf node to which the newly added
TXO is assigned as RightmostIndex, the hash value of that
node as RightmostHash, and the Merkle proof of that node
as RightmostProof. Then, the block proposer broadcasts the
new block and the approved transaction to other Trail nodes.

In Fig. 3, the leaf nodes at indexes 2, 3, 8,9, 10, 11, 12,
and 13 are assigned hash values. The node at index 2 is as-
signed the hash value of a TXO in Inputs, hash(TXOZ), and
the node at index 3 is assigned the corresponding Merkle
proof in Inputs. The node at index 8 is assigned Rightmost-
Proof, and the node at index 9 is assigned RightmostHash;
that is, the RightmostIndex of the parent block is 9. The
nodes at indexes 10, 11, and 12 are assigned the hash values
of TXOs in Outputs, hash(TXO). Since the node at index
12 is the rightmost node assigned a hash value, the Right-
mostIndex of the new block will be 12.

The sibling nodes of the nodes at indexes 2, 3, 8, 9, 10,
and 11 are assigned hash values; however, the sibling node
of the node at index 12 has not yet been assigned a TXO.
Therefore, the node at index 13 is assigned a null hash value.

At this time, since the sibling nodes of the leaf nodes
to which hash values have been assigned have all been as-
signed hash values, the block proposer can compute the hash
values of the parent nodes.

Then, the block proposer assigns hash values to nodes
at height 1. The node at index O is assigned the Merkle
proof in Inputs, and the node at index 5 is assigned Right-
mostProof. Furthermore, the nodes at indexes 1, 4, and 6
are assigned hash values computed from the leaf nodes. The
sibling nodes of the nodes at indexes 0, 1, 4, and 5 are also
assigned hash values. However, since the sibling node of the
node at index 6 has not been assigned a hash value, the node
at index 7 is assigned a null hash value, hash(hash(null)?).

338

At this time, since the sibling nodes of the nodes at
height 1 to which hash values have been assigned have all
been assigned hash values, the block proposer can compute
the hash values of the parent nodes.

The nodes at heights 2 and 3 are assigned hash values
in the same way. The hash values of nodes other than those
to which hash values have been assigned are not updated
when computing the new root of the TXO tree.

In this case, the new Rightmostlndex is 12, the
new RightmostHash is the hash value of the node at
branchID(0, 12), and the new RightmostProof consists
of the hash values of the nodes at branchID(0, 13),
branchID(1, 7), branchID(2, 2), and branchID(3, 0).

4.6 Updating Client Data

Finally, we describe the procedure for updating the data of
a client. When a block is created, the client receives the
updated hash values of the nodes in the TXO tree to update
the Merkle proof it holds.

Here, it is assumed that there is no fork or churn and
that messages do not disappear during communication with
peers, that is, the client receives all updates for the blocks
and the TXO tree; we consider the case in which the client
cannot receive some portion of the updates in Sect. 5.

The client receives the new block, the new TXOs, the
used TXOs, and the hash values of the nodes that have been
assigned hash values when computing the new root of the
TXO tree. If the client has its own TXO among the new
TXOs, then the client keeps that TXO as an unused TXO. If
the client has its own TXO among the used TXOs, then the
client marks that TXO as used.

If the Merkle proof of the unused TXOs is updated or
the client has not yet obtained it, then the client recodes the
hash value of the Merkle proof together with the branchID
and the hash value of the new block.

5. Data Synchronization

In the previous section, we assumed that there were no forks
and that the client was always connected to the network.
However, in an actual blockchain network, forks will oc-
cur, and clients will repeatedly connect to and disconnect
from the network. In this case, a client will need to obtain
the blockchain data and synchronize its own data with the
blockchain.

Furthermore, a Trail node may have newly joined or
left the network and may not have obtained some blocks. In
this case, the Trail node will need to obtain the blockchain
data and synchronize its own data.

5.1 Full Node

For data synchronization, a full node with all transactions
is required. Full nodes are a subclass of Trail nodes. Nor-
mal Trail nodes do not need to hold transactions approved
in past blocks, and a Trail node does not need to be a full

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.2 FEBRUARY 2022

Algorithm 2: Downloading of latest TXO tree up-
dates from a full node.
Input: List of branchlDs ids; hash values of blocks from,
to
Output: Map that maps the hash values of nodes to
branchIDs and hash values of blocks

begin
if from is not an ancestor of to then
| return error
else
nodes < nodes for which branchID is in ids;
return latest updates of nodes between from and

to
end
end
Table 4 Data fields of a client.
Field Description
LatestBlock Hash value of the latest block.

Blocks Map that maps the hash values of parent blocks to
hash values of received blocks.

Unused Map that maps the list of unused TXOs in that block
to the hash value of the latest block of each fork.

Used Map that maps the TXOs to the hash values of blocks
with used TXOs.

Updates Map that maps the hash values of nodes to branchIDs

and hash values of blocks.

node for block generation and transaction validation. A full
node requires more storage space than a normal Trail node
but approximately the same storage space as a full node in
Bitcoin.

When a fork or churn occurs, a client obtains TXO tree
updates that have not been obtained from a full node. Algo-
rithm 2 shows how the client can obtain TXO tree updates
from a full node. It is sufficient for the client to obtain only
the latest update for each node of the TXO tree related to its
own TXOs rather than all the updates.

The Trail node requests the transactions approved by
the missing blocks from the full node. The blocks them-
selves can be obtained from other Trail nodes that are not
full nodes, but the Trail node needs to obtain the transac-
tions from a full node to validate the missing blocks.

5.2 Data Synchronization for a Client

Table 4 shows the data fields held by a client. The client
keeps the hash values of blocks received, its own used
TXOs, its own unused TXOs, and the update history of the
Merkle proofs of the TXOs. When a new block is generated,
client ¢ receives the new block b, the used TXOs usedTXOs,
the newly added TXOs newTXOs, and the node hash values
nodeHashes. When a client receives a new block, the client
first downloads missing blocks and TXO tree updates from
a full node. Then, the client updates its own data with b,
usedTXOs, newTXOs, and nodeHashes.

NAGAYAMA et al.: TRAIL: AN ARCHITECTURE FOR COMPACT UTXO-BASED BLOCKCHAIN AND SMART CONTRACT

6. Broadcast

Since transactions in Trail include the TXO Merkle proofs,
the data size of a transaction is large and wastes network
resources. This section describes a technique for reduc-
ing the data size of a transaction using the characteristics
of the TXO tree. Furthermore, during block propagation,
the data size to be broadcast can be reduced using the ex-
isting blockchain method. Finally, we describe the process
through which a client obtains new blocks, TXOs, and TXO
tree updates.

6.1 Transaction

A transaction includes the TXOs and Merkle proofs in In-
puts. For each TXO, the size of the transaction increases by
128 + 32 x 255 = 8288 bytes. Therefore, Trail attempts
to reduce the number of TXOs in Inputs by determining
the transaction fee in accordance with the number of TXOs
in Inputs. Thus, to reduce the Inputs, a client will prefer
to manage its balance with only a small number of TXOs
instead of keeping the balance in a large number of small
TXOs. If a client generates only one transaction per block,
then the client needs to have only one unused TXO.

Furthermore, multiple Merkle proofs included in a
transaction can be combined to reduce the data size of the
transaction. Let the gap between the maximum and min-
imum indexes of the input TXOs in a transaction be 6. As
shown in Fig. 4, all nodes that are higher than a height log, ¢
with respect to the Merkle proofs in Inputs are the same.

Moreover, let the gap between the Rightmostlndex of
the latest block and the minimum index of the input TXOs
in a transaction be A. Then, nodes at a height higher than
log, A with respect to the Merkle proofs in Inputs are the
same as nodes at a height higher than log, A with respect
to the RightmostProof of the latest block. Therefore, the
Merkle proofs higher than log, A can be removed from the
transaction by adding a flag to the transaction.

If a client uses a TXO within at least b blocks and every
block approves n TXOs, then A < nb and log, A < log,(nb).
In the case of b = 100 and n = 10000 txo/block, log,(nb) is
less than 20. Therefore, the increase in the transaction size
per TXO in Inputs is 128 + 20 x 32 = 768 bytes.

The transaction size is then 32 +ix 768 + 0 X 128 bytes,
where the number of TXOs in Inputs is i and the number of

Merkle proofs
with a height > log,(6)
are the same.

Index gap is 6

Fig.4 Merkle proofs of TXOs referring to the same nodes.

339

TXOs in Outputs is o.
6.2 Block

For block validation, the block proposer must broadcast the
approved transactions with the new block; thus, the size of
the data to be broadcast is substantial. If the total number of
TXOs in Inputs approved by the block is 10000 and the total
number of Outputs is 10000, the data size will be approxi-
mately (960 + 128) x 10000 bytes ~ 10 MB.

The data size can be reduced by omitting duplicate
Merkle proofs, but it is expected that this problem can be
solved using a protocol similar to compact block relay [16].
Compact block relay is a Bitcoin protocol in which only
transaction IDs are included in the block broadcast data in-
stead of sending entire transactions because the transactions
are broadcast before the block is broadcast and other nodes
in the network already have the transactions. By means of
compact block relay, the transactions included in a block
broadcast can be compressed to 8 bytes, so even if 10,000
transactions are approved, the data size is, at most, block
size +10000 x 8 = 8288 + 80000 bytes =~ 90 kB.

6.3 New TXO, Used TXO, and TXO Tree Updates

When a block is generated, a client needs to receive the
newly added TXOs, used TXOs, and TXO tree updates to
update its own data. However, the client needs to update
only its own TXOs and Merkle proofs; thus, the client does
not need all these data.

In Trail, when a client receives a new block, the client
sends a message to the node containing the hash value of
the block, the address of the client, and the indexes of its
own TXOs. The Trail node returns the newly added TXOs
or used TXOs whose OwnerAddress matches the address in
the message and the hash values of nodes with the branchID
in the message.

7. Data Archiving

Trail assumes clients use mobile devices. Therefore, client
devices do not store unnecessary data but rather archive the
data for external storage, such as in the cloud or on an SSD.

Specifically, only the Merkle proofs for unused TXOs
in the latest block are stored on a client device, and the hash
values of other nodes are archived. Instead of c.Updates,
the update data on the device of client ¢ are represented by
c.Memory, and the archived update data are represented by
c.Archive. Algorithm 3 illustrates the archiving of unneces-
sary data to c.Archive.

Furthermore, the client archives old updates of the
TXO tree. Let hj; be the block height of the latest
block, and let A4, be the threshold for archiving. The client
archives the updates of the TXO tree in blocks with a block
height of less than hyesr — hger-

Let u be the number of unused TXOs for the latest
block of each fork, and let f be the number of forks when

340

Algorithm 3: Update of the update history with
archiving.

Input: client ¢, block b and map updatedHashes that
maps the hash values of updated nodes in TXO
tree of b to branchlDs

begin

newMemory «— HashMap

for t in c.Unused[hash(b)] do

index « t.Index

for h — 0 to 254 do

if index is even then

| index « index + 1
else
| index < index — 1

end

i « branchID(#, index)

if c.Memory[i] exists then

updates — c.Memoryli]

if updatedHashesli] exists then

’ newHash «— updatedHashesli]
updates[hash(b)] < newHash
end

else if updatedHashes|i] exists then

newHash «— nodeHashes[i]

if c.Archive[i] exists then

’ updates «— c.Archiveli]
updates[hash(b)] < newHash
else
’ updates «— HashMap
updates[hash(b)] < newHash
end

else

| updates «— c.Archiveli]
end
newMemoryli] « updates
index « index > 1

end
end
forall the i € c.Memory.keys do
if newMemoryli] not exists then
| Store c.Memoryli] to c.Archiveli]
end

end
c.Memory < newMemory

end

generating hg,; blocks. Assume that unused TXOs are used
within b blocks, that n TXOs are added for each block, and
that the Merkle proofs for all unused TXOs are updated in
every block.

At this time, in each fork, the Merkle proofs for
the unused TXOs with heights greater than log, bn are
the same. Therefore, the data size of the TXO tree
updates stored on the client device is min(hg,, b) X
32f (u(|log, bn] + 1) + 255 — (llog, bn] + 1)) bytes. Addi-
tionally, the data size of unused TXOs is 128uf bytes. In
the case of u = 2, hyey = 100, b = 100, f =2, and n = 104,
the data size on the device is approximately 1.76 MB. This
amount of data is sufficiently small to store on a mobile de-
vice.

On the other hand, the size of the archived data in-

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.2 FEBRUARY 2022

creases as the blockchain lengthens. However, the data size
can be reduced by deleting archived data at block height
hger- The client considers that blocks whose height is lower
than Ay .s; — hge are finalized and will not be overwritten
and deletes the update history for those blocks. If a block
is overturned by an attack, the client will need to obtain
the deleted data from a full node. hy,; is considered to be
larger than Ay, b. The size of archived TXO tree updates is

at most 324 (ub(|log, bn]+1)+ " (255 (llog, bn]+1)))
bytes. The size of archived TXOs is 128(%)% f bytes.

8. Smart Contracts

A number of blockchains provide mechanisms for execut-
ing programs and recording the execution results in the
blockchain. These mechanisms and programs are called
smart contracts. This section describes how to execute
smart contracts based on Trail and record their results in the
blockchain.

8.1 Distributed Key Generation

Trail uses threshold signatures to prove that validators ob-
tained consensus for the execution results of smart contracts.
Note that Trail uses threshold signatures only for smart con-
tracts and only smart contract execution nodes (Sect. 8.4)
use them. A distributed key generation (DKG) protocol is a
protocol for generating the private and public keys of thresh-
old signatures without a trusted party.

Feldman proposed a verifiable secret sharing (VSS)
protocol [17]. In Feldman’s VSS protocol, a trusted party
shares a secret via Shamir’s Secret Sharing scheme [18] and
a verification commitment. Each participant in secret shar-
ing can verify the secret share received from the trusted
party using the verification commitment.

Pedersen [19] proposed a (¢, n)-threshold DKG proto-
col in which every participant runs Feldman’s VSS protocol.
Trail utilizes it.

8.2 Extension

TXOs and transactions are extended to the deployment and
execution of smart contracts. For this purpose, a TXO (Ta-
ble 1) has an additional Data field. The Data field contains
smart contract code or a hash value of the execution result
of a smart contract. Similarly, a transaction (Table 2) has an
additional Script field. The Script field contains messages
that can be understood as function calls. If the Script field
is empty, this means that the transaction corresponds to a
payment and not to the execution of a contract.

8.3 Deploying Smart Contracts

To deploy a smart contract, a client generates a transac-
tion that outputs a TXO with the smart contract code in
the Data field. The address of the owner of the TXO that

NAGAYAMA et al.: TRAIL: AN ARCHITECTURE FOR COMPACT UTXO-BASED BLOCKCHAIN AND SMART CONTRACT

Key generation:
(1) Sharing commitment

OO
OO0
H

Deposit

—OOH
O
g

~ Key generation:
(3) Complaint response

Key generation:
(2) Complaint

M

Execution

HOO-

Withdrawal

Fig.5 Life cycle of a smart contract execution node (1 epoch = 3 blocks).

contains the smart contract code is the smart contract ad-
dress. The smart contract address is hash(hash(zx.Inputs) ||
hash(code)), where code is the binary of the smart contract
code. Since a TXO can be used only once as an input, the
smart contract address is unique.

8.4 Smart Contract Execution Nodes

In Ethereum, the nodes that generate and verify the
blockchain also execute smart contracts and maintain their
states. On the other hand, in Trail, the set of nodes that man-
age the blockchain and the set of smart contract execution
(SCE) nodes do not always match.

As shown in Fig. 5, the life cycle of a SCE node is di-
vided into six phases: deposit, three phases for key gen-
eration, execution, and withdrawal. In turn, three phases
for key generation are sharing commitment, complaint, and
complaint response. We call the length of a phase epoch,
that is a system parameter and specified by the number of
blocks. SCE nodes can start smart contract execution every
epoch and each phase takes place in a pipeline. Because of
it, Trail allows six groups of SCE nodes to run in parallel at
most, though a Trail-based blockchain can limit the number
of the groups. Each phase is described below.

8.4.1 Deposit

Each participating user generates a deposit transaction that
locks a certain deposit amount required to become an SCE
node. The deposit will be forfeited if the user commits
fraud. Furthermore, this deposit secures voting rights when
obtaining consensus on the execution result of the smart
contract.

8.4.2 Key Generation

In this phase, the SCE nodes generate the private and pub-
lic keys of the (5, n)-threshold signature mechanism through
the protocol described in Sect.8.1. The key generation
phase consists of three epochs.

341

In the first epoch, every SCE node chooses at random a
polynomial f;(x) with a degree of at most 5 — 1, broadcasts
the verification commitment and sends secret shares individ-
ually to other nodes. Each SCE node verifies the received
secret shares and verification commitments. The blockchain
records the verification commitments.

In the second epoch, if a node experiences failure in
the verification of a secret share or verification commitment
or did not received a secret share in the last epoch, the node
broadcasts a complaint to the sender of that secret share.

In the third epoch, the senders of failed secret shares
broadcast the correct secret shares. If all complaints con-
cerning a verification commitment are resolved, that verifi-
cation commitment is deemed valid. The group public key is
generated from valid verification commitments. If the num-
ber of valid verification commitments is greater than 27”, the
SCE nodes can move to the execution phase. Otherwise, the
nodes cannot move to the execution phase, and the deposit
of the sender of each invalid verification commitment is for-
feited.

8.4.3 Execution

The SCE nodes hold the smart contracts deployed in the
blockchain and their TXOs and Merkle proofs. The SCE
nodes are sorted by the hash values of the concatenation of
the group public key and their own addresses. From the top
of the sorted list, the leaders of the SCE nodes in each block
of the epoch are selected. Subleaders are also selected to
provide redundancy.

The clients send the execution transaction to the SCE
nodes. The leader broadcasts the execution order of the
transactions. Other nodes sign each transaction and send
it back to the leader. When executing an execution transac-
tion, an SCE node creates a TXO with the execution result
recorded in the Data field and uses it as the output of the
transaction.

When the leader has collected a number of signatures
above the threshold, the leader creates the group signatures
of the transactions and broadcasts them to the blockchain
management nodes together with the executed transactions.

The execution process requires a single round-trip
communication between the leader and other SCE nodes. It
involves a broadcast to the nodes over the blockchain peer-
to-peer network. Large latency can be a concern in case
a blockchain network is very large. But even Bitcoin, that
dozens of thousands of nodes participate, can broadcast a
block just in about two second to 90 percentile of all the
nodes [20].

8.4.4 Withdrawal

When the locking period of a deposit is exceeded, the corre-
sponding node will be removed from among the SCE nodes.

342

9. Conclusion

We proposed the Trail architecture. In Trail, the assets of
accounts are managed by updating one Merkle tree through
the blockchain. The issuer of a transaction includes its own
TXO and its Merkle proof in the transaction, which allows
the nodes to validate and generate blocks without needing
to hold the entire Merkle tree. As a result, the block size
is only 8 kB and is constant regardless of the number of
transactions.

We described techniques for reducing the sizes of the
data broadcast to the network. The transaction data size can
be reduced by omitting duplicate Merkle proofs. Further-
more, during block propagation, the data size is reduced us-
ing compact block relay.

We showed that by properly archiving and deleting
data, the data stored on a client device can be reduced to
approximately 1.76 MB, and the data to be archived can be
reduced to 181 MB. Therefore, Trail can operate on mobile
devices.

Finally, we proposed a method of executing smart con-
tracts based on Trail. Nodes can prove that they have ob-
tained consensus on the execution results of smart contracts
by using threshold signatures and can record the execution
results in the blockchain.

Trail significantly reduces the storage requirements for
nodes and makes it easier for users to become block pro-
posers or validators. As a result, Trail improves the decen-
tralization and security of the blockchain.

Acknowledgments

Ryunosuke Nagayama and Kazuyuki Shudo were supported
by SECOM Science and Technolgy Foundation. Kazuyuki
Shudo was supported by JSPS KAKENHI Grant Number
JP21HO04872.

References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.”
https://bitcoin.org/bitcoin.pdf, 2008.

[2] Bitcoin.org, “Bitcoin Core.” https://github.com/bitcoin/bitcoin. Ac-
cessed on Sept. 26th, 2021.

[3] G. Wood, “Ethereum: a secure decentralised generalised transaction
ledger.” http://gavwood.com/paper.pdf, 2014.

[4] Ethereum, “Go-Ethereum.” https://github.com/ethereum/
go-ethereum. Accessed on Sept. 26th, 2021.

[5] Bitcoin.com, “Blockchain size.” https://www.blockchain.com/
charts/blocks-size. Accessed on Sept. 26th, 2021.

[6] R. Nagayama, R. Banno, and K. Shudo, “Trail: A Blockchain Ar-
chitecture for Light Nodes,” 25th IEEE Symposium on Computers
and Communications (ISCC 2020), pp.1-7, 2020.

[7]1 L. Quan, Q. Huang, S. Zhang, and Z. Wang, “Downsampling
Blockchain Algorithm,” Proc. IEEE INFOCOM 2021 Workshops,
pp-342-347, 2019.

[8] Ethereum, “Light client protocol.” https://eth.wiki/en/concepts/
light-client-protocol. Accessed on Sept. 26th, 2021.

[9] V. Buterin, “The Stateless Client Concept.” https://ethresear.ch/t/
the-stateless-client-concept/172. Accessed on Sept. 26th, 2021.

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.2 FEBRUARY 2022

T. Dryja, “Utreexo: A dynamic hash-based accumulator optimized
for the Bitcoin UTXO set.” https://eprint.iacr.org/2019/611. Ac-
cessed on Sept. 26th, 2021.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding,” 2018 IEEE Symposium on Security and Privacy (SP),
2018.

V. Buterin, “Sharding FAQs.” https://github.com/ethereum/wiki/
wiki/Sharding-FAQs. Accessed on Sept. 26th, 2021.

A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A.
Miller, A. Poelstra, J. Timon, and P. Wuille, “Enabling Blockchain
Innovations with Pegged Sidechains,” 2014.

D. Leung, A. Suhl, Y. Gilad, and N. Zeldovich, “Vault: Fast Boot-
strapping for the Algorand Cryptocurrency,” NDSS, 2019.
Blockchain.com, “Average block size.” https://www.blockchain.
com/charts/avg-block-size. Accessed on Sept. 26th, 2021.

M. Corallo, “Compact Block Relay (BIP 152).” https://github.com/
bitcoin/bips/blob/master/bip-0152.mediawiki. Accessed on Sept.
26th, 2021.

P. Feldman, “A practical scheme for non-interactive verifiable se-
cret sharing,” 28th Annual Symposium on Foundations of Computer
Science (SFCS 1987), pp.427-438, 1987.

A. Shamir, “How to share a secret,” Communication of the ACM,
vol.21, no.11, pp.612-613, 1979.

T.P. Pedersen, “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing,” Advances in Cryptology — CRYPTO
’91, pp.129-140, 1992.

T. Neudecker, Security and Anonymity Aspects of the Network
Layer of Permissionless Blockchains, Ph.D. thesis, Karlsruher In-
stituts fiir Technologie, Nov. 2018.

Ryunosuke Nagayama received the B.E.
and M.S. degrees from Tokyo Institute of Tech-
nology in 2019 and 2021, respectively. He is
currently working with Yahoo Japan Corpora-
tion. His research interests include distributed
systems and blockchain.

Ryohei Banno received the Bachelor of
Engineering and Master of Information Science
and Technology degrees from Hokkaido Univer-
sity, Japan, in 2010 and 2012 respectively, and
the Ph.D. degree in science from Tokyo Institute
of Technology, Japan, in 2018. From 2012 to
2018, he was a Researcher at NTT Network In-
novation Laboratories. From 2018 to 2020, he
was a Researcher at Tokyo Institute of Technol-
ogy. Since 2020, he has been an Assistant Pro-
fessor at Kogakuin University, Japan. His re-

search interests include distributed systems and Internet of Things (IoT).
Dr. Banno’s awards and honors include the Outstanding Paper Award from
Information Processing Society of Japan (IPSJ) in 2015, Inoue Research
Award for Young Scientist from Inoue Foundation for Science in 2020, and
Funai Research Award from Funai Foundation for Information Technology
in 2020.

http://dx.doi.org/10.1109/iscc50000.2020.9219673
http://dx.doi.org/10.1109/infcomw.2019.8845124
http://dx.doi.org/10.1109/sp.2018.000-5
https://blockstream.com/sidechains.pdf
http://dx.doi.org/10.14722/ndss.2019.23313
http://dx.doi.org/10.1109/sfcs.1987.4
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/3-540-46766-1_9

NAGAYAMA et al.: TRAIL: AN ARCHITECTURE FOR COMPACT UTXO-BASED BLOCKCHAIN AND SMART CONTRACT
343

Kazuyuki Shudo received the B.E. de-
gree in 1996, the ML.E. degree in 1998, and the
Ph.D. degree in 2001 all in computer science
from Waseda University. He worked as a Re-
search Associate at the same university from
1998 to 2001. He later served as a Research
Scientist at National Institute of Advanced In-
dustrial Science and Technology. In 2006, he
joined Utagoe Inc. as a Director, Chief Technol-
ogy Officer. Since December 2008, he currently
serves as an Associate Professor at Tokyo Insti-
tute of Technology. His research interests include distributed computing,
programming language systems and information security. Dr. Shudo has
received the best paper award at SACSIS 2006, Information Processing
Society Japan (IPSJ) best paper award in 2006, the Super Creator certifi-
cation by Japanese Ministry of Economy Trade and Industry (METI) and
Information Technology Promotion Agency (IPA) in 2007, IPSJ Yamashita
SIG Research Award in 2008, Funai Prize for Science in 2010, The Young
Scientists’ Prize, The Commendation for Science and Technology by the
Minister of Education, Culture, Sports, and Technology in 2012, and IPSJ
Nagao Special Researcher Award in 2013. He is a member of IEEE, IEEE
Computer Society, IEEE Communications Society and ACM.

