
2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
1

Verification of Applying Plumtree Algorithm
to Blockchain Networks

Yusuke KITAGAWA†a), Student Member, Kazuyuki SHUDO††, Member, Osamu MIZUNO†, Senior Member,
and Ryohei BANNO† ,††, Member

SUMMARY Blockchain is gaining attention as a technology to sup-
port cryptocurrency. It is a system that prevents tampering by sharing a
ledger for recording transactions among multiple computers on a network.
However, one of the problems in using blockchain is the consumption of
communication resources. It is caused by that the information received by
a node can be delivered to the same node more than once through different
neighbors. In this paper, we propose a method to reduce duplicate mes-
sages in a blockchain network by applying an algorithm called Plumtree.
The proposed method enables forming loosely fixed propagation paths on
a random topology. Through simulation experiments, we compared the
proposed method with existing methods and confirmed that the number of
messages can be reduced by more than 75 ％ when block propagation is
simulated up to four blocks.
key words: Blockchain，SimBlock，Plumtree, Peer-to-Peer network

1. Introduction

The distributed ledger technology represented by blockchain
is a system in which participants share records and keep them
in a state that is difficult to tamper with. It is known for its
applications in virtual currencies and financial services such
as Bitcoin [1]. The Ministry of Economy, Trade and Industry
(METI) estimates the domestic market size for blockchain to
be approximately 67 trillion yen [2]. In a typical blockchain,
such as Bitcoin, a large number of nodes randomly intercon-
nect to form a Peer-to-Peer (P2P) network. Each node sends
information to its neighbors in order to spread the informa-
tion to all nodes. The node that receives the information also
sends the information to another node, and so on. As a result,
information that has already been received may be sent mul-
tiple times through different nodes [3], resulting in excessive
consumption of communication resources. In this study, we
aim to solve the problem of communication resource con-
sumption in the Bitcoin network by using the Plumtree algo-
rithm [4], which is known as an efficient broadcast method.
The structure of this paper is as follows: Section 2 describes
the blockchain, Section 3 gives the details of the proposed
method, in section 4, we describe the evaluation experiments
and their results, and finally, in section 5, we summarize and
discuss the future work of this research.

2. Blockchain

In this section, we describe the blockchain techniques.
†The author is with Kogakuin University, Tokyo, Japan.
††The author is with Tokyo Institute of Technology, Tokyo,

Japan.
a) E-mail: cm21016@ns.kogakuin.ac.jp

Blockchain is an underlying technology for cryptocurren-
cies like Bitcoin, which is implemented based on a paper
by Satoshi Nakamoto [1]. Blockchain enables distributed
consensus building among participants in an open network
without the need for trusting a specific third party and en-
ables highly transparent transactions by making all history
traceable. Blockchain is expected to be used in a variety of
fields, as it is difficult to falsify data and has zero downtime.

2.1 Types of Blockchain

There are three types of blockchain networks as shown below.

• Public blockchain network
A public blockchain network has no administrator, and
anyone with an Internet connection can become a node
and join the network.

• Private blockchain network
Unlike a public blockchain network, a private
blockchain network has a single administrator and re-
quires permission from the administrator to join the
network as a node.

• Consortium-type blockchain network
A consortium blockchain network is a blockchain in
which a specific number of administrators generate and
approve blocks, providing both the decentralized na-
ture of a public blockchain and the speed of a private
blockchain. However, it has the disadvantage that it
requires trust in a specific administrator, and the trans-
parency of transactions inherent in the blockchain is
lost.

In this paper, we focus on Bitcoin, the public type.

2.2 Broadcast

The Bitcoin block sharing method is explained using the
sequence diagram of Bitcoin messages in Figure 1. The
Bitcoin node first sends an inv message to the nodes when
it receives a block. The node that receives the message
checks if there are any missing blocks. If there is a missing
block, it sends a getdata message to the node that sent the
inv message and asks it to send the missing block. This
mechanism eliminates the need to constantly send blocks to
the entire network, thus reducing redundant transmissions

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers



2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
2

Fig. 1 Sequence diagram of messages by the existing method

3. Proposed method

The problem with using blockchain is the consumption of
communication resources. received messages are propa-
gated to other nodes to spread the messages. Therefore,
there is a problem that a message that has already been re-
ceived is delivered multiple times via different nodes. In
Bitcoin, the aforementioned mechanism reduces the unnec-
essary transfer of blocks, but there is a problem that inv mes-
sages consume communication resources. In a blockchain
network, received messages are propagated to other nodes
to spread the messages. Therefore, there is a problem that
a message that has already been received is delivered mul-
tiple times via different nodes. There is also a concern that
the propagation delay will increase due to the need for con-
firmation by the inv message. In this study, we solve the
problem of communication resource consumption by using
the function of reducing redundant message transmission in
Plumtree based on the Bitcoin network.

3.1 Plumtree

Plumtree [4] is a broadcast method that combines Tree-based
and Gossipbased approaches to reduce redundancy while
maintaining high message reliability. In this method, each
node transmits and improves efficiency by forwarding mes-
sages only in a Tree-based manner. It also uses gossip-based
links between nodes to properly handle inter-node failures.
In Tree-based broadcast, a tree consisting of all participant
nodes is constructed and messages are transmitted only along
the tree, which reduces the redundancy of messages. How-
ever, if the number of nodes increases or decreases, or if a
network failure occurs, the tree becomes incomplete, and a
message may not reach all nodes. In Gossip-based broad-
cast, when a node attempts to broadcast a message, the node
randomly selects 𝑡 nodes to send the message. The node that
receives the message for the first time repeats this process to
send the message, which not only provides high scalability

Fig. 2 Sequence diagram of messages by the proposed method

Fig. 3 Example of Spanning Tree

but also makes the system more resistant to network inade-
quacies and node failures. However, redundancy tends to be
high.

3.1.1 Tree-based and Gossip-based

Plumtree is designed around the Gossip-based approach to
message broadcasting, which is based on the idea that all
nodes contribute equally to the propagation of a message.
To achieve this idea, when a node broadcasts a message, it
randomly chooses a node to send it to. The node that receives
the message for the first time repeats this process. This
property allows the system to respond flexibly to network
failures and increases or decreases in the number of nodes.
In Gossip-based, the following approaches are used．

• Eager push
As soon as a message is received, it is sent to the neigh-
boring nodes. Lazy push approach

• Lazy push
When a node receives a message, it sends the message
identifier to the neighboring nodes. If the node has not
received the message, it makes a pull request.

• Pull
Periodically, a node queries its neighboring nodes for
information on recently received messages. Plumtree
uses a combination of Eager push ’s mechanism for
sending a small number of messages and Lazy push’s
mechanism for assisting transmission.



2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
3

3.1.2 How Plumtree Works

Initially, the block is broadcasted using the same mecha-
nism as Bitcoin, and a spanning tree is constructed using
the Plumtree algorithm. In subsequent broadcasts, the con-
structed tree is used. The exchange of inv and getdata mes-
sages is omitted, and blocks are sent directly to the child
nodes of the tree. The Plumtree algorithm is used to repair
the tree when the number of nodes increases or decreases, or
when the network fails.

3.2 Applying Plumtree in Bitcoin Network

In the proposed method, the first block is broadcasted using
the same mechanism as Bitcoin. Upon receiving the block for
the first time, each node stores the information of the sender
node. Each node also stores the information of nodes to
which it sends the block. These stored neighbor information
from the spanning tree. The information that each node has
is shown below.

• eagerPushPeers
The set of adjacent nodes in the spanning tree

• lazyPushPeers
The set of adjacent nodes other than eagerPushPeers in
the spanning tree

For example, from Figure 2, the eagerPushPeers of node
B include nodes A and E, and the lazyPushPeers include
node C. The basic operation is that all nodes that have the
information of eagerPushPeers send messages by eager push.
The basic operation is to put all neighboring nodes into
eagerPushPeers and send messages to the neighboring nodes
by eager push. If a duplicate message is received, the nodes
will be added to the lazyPushPeer. Once the first broadcast is
complete, the spanning tree is formed. In a stable network, it
is possible to broadcast only by eager push on the spanning
tree. If node A intends to send a message to node C but
node C has already left, it is unable to send the message to
node H. In this case node H will not know if it has received
new messages, so it will query its lazyPushPeers for new
messages with Lazy push. If there is a new message, select
one of the nodes E, F, or G and query the message with
Lazy push. This Plumtree algorithm is used to construct the
spanning tree. In subsequent broadcasts, the constructed tree
is used. As shown in Figure 3, we omit the exchange of inv
and getdata messages and send blocks directly to the child
nodes of the tree. When the number of nodes changes or the
network fails, the Lazy push and Pull are used for repairing
the spanning tree.

4. Evaluation

We measured the number of messages and the number of
hops by using SimBlock [5], which can simulate the infor-
mation propagation of blockchain. This section describes the
experimental environment and the result of the evaluation.

Table 1 SimBlock parameters
Parameter Value

NUM_OF_NODES 8370
BLOCK_SIZE 803.565 Kbyte

CBR_USAGE_RATE 0
CHURN_NODE_RATE 0

Table 2 Comparison of the number of messages
Messages type # of messages

inv (Proposed method) 144714
inv (Existing method) 578856

getdata (Proposed method) 144714
getdata (Existing method) 578856

4.1 Simblock

SimBlock is a simulator for a blockchain network consisting
of many nodes on the Internet. SimBlock reproduces the
network of an actual blockchain in use, so that users can
examine the behavior of a blockchain as close to the real
thing as possible. It allows us to change the behavior of the
nodes that make up the blockchain network and verify how
new techniques affect the blockchain network.

4.2 Implementation of proposed method

We implemented the proposed method by modifying Sim-
Block. When a node broadcasts its first block, it creates an
array of child node sets using the information it received
when it sent the block to its neighboring nodes. The array of
child node sets is program to store the information of the node
at the time when the block transmission was completed. The
broadcast of the next block was set to be transmitted from
the node that stored the information first, using the array of
child node sets. For counting inv and getdata messages, we
implemented a program to count the number of inv and get-
data messages on each node and calculate the total number
of messages received by all nodes.

4.3 Experimental configuration

The experimental parameters of SimBlock used in this exper-
iment are shown in Table 1. The number of nodes and block
size were set to 8370 and 803.565 Kbytes, respectively, based
on Bitcoin chart information [6]. These are the values as of
December 15, 2020. We did not use Compact Block Relay
(CBR) and used default values for the rest of the parameters
of SimBlock. Our experiments simulate block propagation
up to four blocks. Each experiment was conducted 10 times
and we calculated the average values.

4.4 Evaluation of the number of messages

We evaluated the number of messages when Plumtree is ap-
plied to a blockchain. Table 2 shows the number of messages
in the Bitcoin blockchain for the proposed method and the



2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
4

Fig. 4 Number of inv and getdata messages in Bitcoin

conventional method. Figure 4 shows the comparison of
the number of messages between the proposed method and
the conventional method for Bitcoin. The vertical axis is
the total number of messages received by all the nodes, and
the horizontal axis is the measurement item. 75% or more
of the number of messages can be reduced by comparing
the proposed method and the existing method. In the pro-
posed method, inv and getdata messages are generated only
at the first broadcast. As a result, the number of messages is
reduced compared to existing methods.

4.5 Relationship between the number of hops and the delay
time

We investigated the relationship between the number of
hops and the delay time when Plumtree is applied to the
blockchain. Figure 5 shows the relationship between the
number of hops and the delay time of the proposed method.
The vertical axis is the average delay per block, and the
horizontal axis is the average number of hops. In the pro-
posed method, the average delay increases as the average hop
count increases. From the relationship between the number
of hops and the delay, it can be seen that the Plumtree builds
a route according to the node that sends the first block, so
if subsequent blocks are sent by other nodes, they are trans-
mitted using a route that is not the shortest. In addition, the
larger the number of hops, the longer it takes for the block to
reach the destination, and the propagation delay is expected
to increase.

5. Conclusion

In this paper, we propose a message reduction method for
blockchain networks and evaluate it by simulation. As a re-
sult, we found that the number of messages can be reduced by
applying Plumtree compared to existing methods. In the fu-
ture, we would like to study how to improve the construction
of spanning trees in order to reduce the number of hops.

Acknowledgements
This work was supported in part by the JGC-S Scholarship
Foundation. A part of this work was supported by JSPS
KAKENHI Grant Number JP21H04872.

Fig. 5 Relationship between Bitcoin Hop Count and Latency

References

[1] Satoshi Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem", 2008.

[2] Ministry of Economy, Trade and Industry (METI), "FY2015 Survey
Report on the Infrastructure Development for the Informatization and
Servitization of Japan’s Economy and Society (Market Research on
Electronic Commerce)," (August 8, 2016)

[3] Andreas M. Antonopoulos by Takaya Imai, translated by Junichiro
Hatogai, "Bitcoin and Blockchain: Technologies Supporting Cryp-
tocurrencies", NTT Publishing, 2016.

[4] João Leitão, Jos Pereira, Luẽıs Rodrigues, "Epidemic Broadcast
Trees", 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS 2007), pp.301-310, Oct. 2007.

[5] Yusuke Aoki, Kai Otsuki, Takeshi Kaneko, Ryohei Banno, Kazuyuki
Shudo, "SimBlock: A Blockchain Network Simulator", Workshop
on Cryptocurrencies and Blockchains for Distributed Systems (Cry-
Block, in conjunction with IEEE INFOCOM), pp. 325-329, April
2019.

[6] BitInfoCharts, https://bitinfocharts.com (Accessed December 15,
2020)


