
A scalable IoT data collection method
by shared-subscription

with distributed MQTT brokers

Ryohei Banno[0000−0001−7268−4657] and Toshinori Yoshizawa†

Kogakuin University, Tokyo, JAPAN
banno@computer.org

Abstract. Internet of Things (IoT) systems like a smart factory and
a smart city require collecting a massive amount of data from sensors.
MQTT is a promising protocol for such uses due to its lightweight design
and loose-coupling nature by publish/subscribe messaging model. On the
other hand, there is an issue that a broker could be a performance bot-
tleneck. Even though it is not the case, reception by a subscriber might
not catch up with the amount of data from the broker. In this paper, we
propose a scalable IoT data collection method with distributed MQTT
brokers. By shared-subscription functionality, which appeared in MQTT
version 5.0, the proposed method enables an application to receive a
massive amount of IoT data. To evaluate the proposed method, we have
developed a load testing tool named MQTTLoader. Experimental results
show that the proposed method can improve the throughput compared
to conventional ways.

Keywords: MQTT · IoT · Publish/subscribe · Distributed systems

1 Introduction

Internet of Things (IoT) has been developing in various application fields. For
example, in Industrie 4.0, monitoring the condition of industrial robots enables
preventive maintenance and reduces unexpected downtime [8]. It is made pos-
sible by collecting data such as operation time and enclosure temperature from
industrial robots. Another example is a smart city, where sensors provide envi-
ronmental data to realize various services, e.g., relieving traffic congestion and
lowering damages caused by natural disasters.

For collecting data from IoT devices, MQTT [14] is a promising communica-
tion protocol. It provides loose-coupling nature by publish/subscribe messaging
model [7], in addition to its small size of header that contributes to traffic re-
duction and power saving.

However, an MQTT broker or a subscriber could be a performance bottle-
neck. Figure 1 illustrates a typical architecture of collecting data by MQTT. A
massive amount of data from publishers concentrates on the broker, and thus

† Present affiliation: VINX Corp.



Application
MQTT client
(Subscriber)MQTT broker

MQTT clients
(Publisher)

Fig. 1. Collecting IoT data by MQTT

it might not accept all published data. Even though the broker can process all
the data, the subscriber might not catch up with the amount of data from the
broker.

To tackle this issue, we propose a scalable IoT data collection method with
distributed MQTT brokers. In the proposed method, an application can use
more than one subscriber to receive data by shared-subscription functionality,
which appeared in MQTT version 5.0 [16].

2 Related work

Since an MQTT broker could be a performance bottleneck, there are existing
studies to extend the performance of brokers.

muMQ [17] is a high-performance MQTT broker. It efficiently exploits multi-
core CPUs by an event-driven I/O mechanism and avoids the kernel overhead
by DPDK. muMQ can improve the performance of a single broker, though it
does not obtain horizontal scalability and requires hardware supporting DPDK.

MQTT-ST [13] and ILDM [3,4] are methods to utilize multiple MQTT bro-
kers by connecting them and forming a delivery tree. They are effective if the
placement of publishers and subscribers has a high locality, i.e., publishers and
subscribers of the same topic tend to connect to the same broker. On the other
hand, considering the case to collect IoT data from all publishers as shown in
Fig. 1, it is hard to obtain load distribution as well as causing high latency due
to multi-hop forwarding among brokers.

Detti et al. [5] have proposed a method to reduce the traffic among brokers by
making each subscriber connect to multiple brokers. It is similar to our method
from the viewpoint that an application utilizes multiple connections to brokers
to receive data in which it is interested. However, there is a difficulty in load
distribution if a topic has a massive amount of data.

3 Scalable IoT data collection with MQTT brokers

We propose a scalable IoT data collection method with distributed MQTT bro-
kers. Figure 2 shows an overview of the proposed method. In the proposed
method, we use multiple brokers for load distribution. In addition, each ap-
plication uses multiple subscribers to receive IoT data in parallel.

We assume a large number of publishers. Each publisher connects to one of
the brokers. The broker to connect to is decided by Domain Name System (DNS)



DNS
Server

Publishers Brokers
Subscribers

Shared-subscription group

Fig. 2. Overview of proposed method

round-robin, i.e., a publisher does not need additional functionality except for
specifying the broker by a domain name.

An application uses subscribers more than or equal to the number of brokers.
Each subscriber connects to one of the brokers. We assume that the broker
to connect to is decided as the configuration of the application by its user.
Subscribers connecting to the same broker make a shared-subscription group.

Shared-subscription functionality has appeared in MQTT version 5.0 [16]. It
enables to group subscribers so that they share receiving messages of a topic.
That is, each message of the topic is delivered to one of the subscribers participat-
ing in the group. This could help load distribution and improve the throughput
of subscribers.

Collecting data by shared-subscription is similar to the consumer group mech-
anism of Apache Kafka [1,11], which is proprietary software. In contrast, MQTT
is an open standard protocol by OASIS [16] and an ISO recommendation [10].

4 Load testing tool

The performance of MQTT brokers holds interest from engineers and researchers
since they could be bottlenecks, as we mentioned in Section 2. However, it has not
been sufficiently clarified what characteristics actual MQTT brokers have and
how we can appropriately measure and analyze their performance, especially for
the MQTT v5.0.

To evaluate MQTT v5.0 brokers and the proposed method, we have devel-
oped a load testing tool named MQTTLoader [2,15]. It is implemented in Java.
Binary files, source codes, and documents are publicly available on GitHub [15].

Figure 3a shows an overview of MQTTLoader. It generates multiple MQTT
clients (publishers and subscribers) and applies a load on a broker based on spec-
ified parameter settings. Examples of parameters are listed in Table 1. Besides
the list, various parameters are provided, such as QoS level, Retain flag, payload
size, publish interval, ramp-up/ramp-down time, etc.



Broker
Publisher

Subscriber

MQTTLoader

(a) Running on single-host

Broker

Publisher
MQTTLoader

MQTTLoader
Subscriber

NTP server

(b) Running on multi-host

Fig. 3. Overview of MQTTLoader

Table 1. Example of parameters

Parameter Description

broker Broker address.
mqtt version MQTT version.
num publishers Number of publishers.
num subscribers Number of subscribers.
shared subscription Enable shared-subscription.
ntp NTP server address.

We can run MQTTLoader either on a single host machine or multiple host
machines like Fig. 3b. Running both publishers and subscribers on a single
host may cause mutual influence, e.g., receiving load of subscribers lowers the
throughput of publishers. By running publishers and subscribers separately on
different hosts, we can avoid such mutual influence.

Latency is the time from sending out by a publisher to receiving by a sub-
scriber. To calculate the latency, each message has a timestamp of sending out in
its payload. The latency is calculated by the difference between this timestamp
and when a subscriber receives the message. In the case of running MQTTLoader
on multi-hosts, MQTTLoader obtains time information from the specified Net-
work Time Protocol (NTP) server and uses it for the calculation to avoid the
influence of the time offset among the hosts.



B1

S1

B1

S1 S2

B1

S1 S2

B2 B1

S1 S2

B2

S3 S4

P8 P8 P8 P8

SGL-SGL SGL-SHD MLT-SGL MLT-SHD

Bi

Si

Pi Publisher
Broker

Subscriber

Fig. 4. Experimental configurations

Table 2. Hardware information of experimental environment

Publisher Broker, Subscriber

CPU Core i9 10900K Celeron N3350
Memory 64GB 4GB
OS Ubuntu 20.04 Ubuntu 20.04

5 Evaluation

To evaluate the proposed method, we conducted experiments to measure the
following performance characteristics.

Throughput (publishers)
Average throughput between publishers and brokers.

Throughput (subscribers)
Average throughput between brokers and subscribers.

Latency
Average time from publishers to subscribers.

We use MQTTLoader v0.7.2 for publishers and subscribers. Although there
are various MQTT broker products [6, 9, 12], we choose Mosquitto (v1.6.9 − 1)
since it is widely used and known for its superior performance.

We set the number of publishers 8. Each publisher sends out messages with
no interval, where each message has a 600 bytes payload. Each measurement
takes 60 seconds and it is conducted three times repeatedly.

Regarding brokers and subscribers, we use four cases in Fig. 4 for comparison:

SGL-SGL
Using a single broker B1 and a single subscriber S1.

SGL-SHD
Using a single broker B1 and two subscribers S1 and S2, which consists of a
shared-subscription group.

MLT-SGL
Using two brokers B1 and B2 and two subscribers S1 and S2 without shared-
subscription.



0

40000

80000

120000

160000

QoS 0 QoS 1 QoS 2

Av
er

ag
e 

th
ro

ug
hp

ut
 [m

sg
/s

ec
]

SGL-SGL SGL-SHD MLT-SGL MLT-SHD

Fig. 5. Publisher throughput

0

20000

40000

60000

80000

Qos 0 Qos 1 Qos 2

Av
er

ag
e 

th
ro

ug
hp

ut
 [m

sg
/s

ec
]

SGL-SGL SGL-SHD MLT-SGL MLT-SHD

Fig. 6. Subscriber throughput

MLT-SHD
Using two brokers B1 and B2 and four subscribers S1, S2, S3, and S4. The
pair S1 and S2 and the pair S3 and S4 form a shared-subscription group,
respectively.

Table 2 shows the hardware information of the host machines. Note that the
pair S1 and S2 and the pair S3 and S4 run in one host machine.

5.1 Throughput

Figure 5 and Figure 6 show the throughput of publishers and the throughput
of subscribers, respectively. Overall, the former is larger than the latter. This
means that the amount of published data exceeds the capability of brokers.



0

4000

8000

12000

16000

20000

24000

QoS 0

Av
er

ag
e 

la
te

nc
y 

[m
se

c]

SGL-SGL SGL-SHD

MLT-SGL MLT-SHD

(a) QoS level 0

0

20

40

60

80

100

120

QoS 1 QoS 2

Av
er

ag
e 

la
te

nc
y 

[m
se

c]
SGL-SGL SGL-SHD MLT-SGL MLT-SHD

(b) QoS level 1 or 2

Fig. 7. Latency

When focusing on the throughput of subscribers, MLT-SHD, i.e., the pro-
posed method, achieves the largest throughput. That is, using multiple brokers
and multiple subscribers is effective for collecting a massive amount of IoT data.

On the other hand, in Fig. 5, MLT-SGL gets larger throughput than MLT-
SHD. One possibility is that the load of processing shared-subscription inside
each broker influences the receiving process of the broker.

5.2 Latency

Figure 7 shows the results of latency. Regardless of the four cases, QoS 0 traffic
causes significantly long latency. In the case of QoS 1 and 2, MLT-SHD has the
largest latency. It possibly appears in return for the high throughput.

Note that the latency could increase according to the elapsed time because
the brokers are considered to be overloaded as mentioned above.

6 Conclusion

In this paper, we proposed a scalable IoT data collection method with distributed
MQTT brokers. In the proposed method, each application uses multiple sub-
scribers with shared-subscription functionality to receive IoT data in parallel.
To evaluate the proposed method, we developed a load testing tool MQTT-
Loader. By the experiments with Mosquitto and MQTTLoader, we found that
the proposed method can improve the throughput compared to conventional
ways. On the other hand, the latency of the proposed method tends to become
large. Future work includes a detailed analysis of those experimental results and
improvement of the latency.



Acknowledgments

This work was supported by JSPS KAKENHI Grant No.19K20253.

References

1. Apache Kafka: https://kafka.apache.org/ (accessed July 7, 2021)
2. Banno, R., Ohsawa, K., Kitagawa, Y., Takada, T., Yoshizawa, T.: Measuring Per-

formance of MQTT v5.0 Brokers with MQTTLoader. In: Proc. IEEE Consumer
Communications & Networking Conference. pp. 1–2 (2021)

3. Banno, R., Sun, J., Fujita, M., Takeuchi, S., Shudo, K.: Dissemination of edge-
heavy data on heterogeneous MQTT brokers. In: Proc. IEEE International Con-
ference on Cloud Networking. pp. 1–7 (2017)

4. Banno, R., Sun, J., Takeuchi, S., Shudo, K.: Interworking Layer of Distributed
MQTT Brokers. IEICE Transactions on Information and Systems E102.D(12),
2281–2294 (2019)

5. Detti, A., Funari, L., Blefari-Melazzi, N.: Sub-linear scalability of mqtt clusters
in topic-based publish-subscribe applications. IEEE Transactions on Network and
Service Management 17(3), 1954–1968 (2020)

6. EMQ X: https://www.emqx.io/ (accessed July 7, 2021)
7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of

Publish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)
8. FANUC Corp.: Field system. https://fanuc.co.jp/en/product/field/index.

html (accessed July 7, 2021)
9. HiveMQ: https://www.hivemq.com/ (accessed July 7, 2021)

10. ISO Central Secretary: Information technology — Message Queuing Telemetry
Transport (MQTT) v3.1.1. Standard ISO/IEC 20922:2016, International Organi-
zation for Standardization (2016)

11. Kreps, J., Narkhede, N., Rao, J.: Kafka: A distributed messaging system for log pro-
cessing. In: Proc. International Workshop on Networking Meets Databases. pp. 1–7
(2011)

12. Light, R.A.: Mosquitto: server and client implementation of the MQTT protocol.
Journal of Open Source Software 2(13), 265 (2017)

13. Longo, E., Redondi, A.E., Cesana, M., Arcia-Moret, A., Manzoni, P.: Mqtt-st: a
spanning tree protocol for distributed mqtt brokers. In: Proc. IEEE International
Conference on Communications. pp. 1–6 (2020)

14. MQTT: https://mqtt.org/ (accessed July 7, 2021)
15. MQTTLoader: https://github.com/dist-sys/mqttloader (accessed July 7,

2021)
16. OASIS Standard: MQTT Version 5.0 (2019)
17. Pipatsakulroj, W., Visoottiviseth, V., Takano, R.: mumq: A lightweight and

scalable mqtt broker. In: Proc. IEEE International Symposium on Local and
Metropolitan Area Networks. pp. 1–6 (2017)


