
Measuring Performance of MQTT v5.0 Brokers
with MQTTLoader

Ryohei Banno∗, Koki Ohsawa∗, Yusuke Kitagawa∗, Takumu Takada∗, Toshinori Yoshizawa∗
∗Kogakuin University, Tokyo, JAPAN

Email: banno@computer.org

Abstract—MQTT is one of the best-known communication
protocols for the Internet of Things (IoT). Its light-weight design
and loose-coupling nature by publish/subscribe messaging model
enable effective information exchange among various devices.
Since MQTT brokers could be performance bottlenecks due to
the massive amount of data from the increasing IoT devices,
their performance holds interest from researchers and engi-
neers. Furthermore, the performance characteristics of MQTT
version 5.0, which was released in 2019 and accompanied by
new functionalities e.g., shared-subscription, have not become
clear. To provide a way to measure MQTT broker performance
efficiently and accurately, we have developed an open-source load
testing tool MQTTLoader. In this demonstration, we introduce
MQTTLoader with its capabilities and features. We also show
how it works by using our demonstration environment and
describe some results of benchmarking MQTT brokers.

Index Terms—MQTT, IoT, Publish/subscribe, Load testing

I. INTRODUCTION

MQTT [1] is a promising communication protocol for the
Internet of Things (IoT). It requires only a small size of header,
that contributes to traffic reduction and power saving, as
well as providing loose-coupling nature by publish/subscribe
messaging model [2]. Due to the increase in demand, MQTT
version 5.0 was released in 2019 and accompanied by several
new functionalities such as shared-subscription [3].

The performance of MQTT brokers holds interest from
engineers and researchers [4]–[8] since they could be bot-
tlenecks if considering the massive amount of data from the
increasing IoT devices. However, it has not been clarified
what characteristics actual MQTT brokers have and how we
can appropriately measure and analyze their performance,
especially for the MQTT v5.0.

To provide a way to measure MQTT broker performance
efficiently and accurately, we have developed an open-source
load testing tool MQTTLoader [9]. It supports both MQTT
v5.0 and v3.1.1.

In this demonstration, we introduce MQTTLoader with its
capabilities and features. We also show how it works by using
our experimental environment and describe some results of
actual load testing.

II. MQTTLOADER

MQTTLoader is a load testing tool for MQTT, implemented
in Java. Binary files, source codes, and documents are publicly
available on GitHub [9].

This work was supported by JSPS KAKENHI Grant No.19K20253.

Broker
Publisher

Subscriber

MQTTLoader

(a) Running on single-host

Broker

Publisher
MQTTLoader

MQTTLoader
Subscriber

NTP server

(b) Running on multi-host

Fig. 1. Overview of MQTTLoader

TABLE I
EXAMPLE OF PARAMETERS

Parameter Description
-b 〈arg〉 Broker address.
-v 〈arg〉 MQTT version.
-p 〈arg〉 Number of publishers.
-s 〈arg〉 Number of subscribers.
-ss Enable shared subscription.
-n 〈arg〉 NTP server address.

Figure 1 shows an overview of MQTTLoader. It generates
multiple MQTT clients (publishers and subscribers) and ap-
plies a load on a broker based on specified parameter settings.
Extracted parameters are listed in Table I. Besides ones in the
list, various parameters are provided such as QoS level, Retain
flag, payload size, publish interval, ramp-up/ramp-down time,
etc.

We can run MQTTLoader on a single host machine or
multiple host machines like Figure 1(a) and Figure 1(b) re-
spectively. Running both publishers and subscribers on a single
host may cause mutual influence, e.g., subscribers’ receiving
load lowers publishers’ throughput. By running publishers and
subscribers separately on different hosts, we can avoid such
mutual influence.

MQTTLoader displays results of measurement on standard
output as shown in Figure 2. The results include the following
statistic information:

• Maximum throughput of publishers.
• Average throughput of publishers.
• Total number of messages sent by publishers.
• Maximum throughput of subscribers.
• Average throughput of subscribers.
• Total number of messages received by subscribers.
• Maximum latency
• Average latency

banno
テキストボックス
Draft version



Fig. 2. Example of measurement output

0

8000

16000

24000

32000

0 10 20 30 40 50 60

La
te

nc
y 

[m
se

c]

Elapsed time [sec]

Mosquitto HiveMQ EMQ X

Fig. 3. Temporal change of latency

Latency is the required time from sending out by a publisher
to receiving by a subscriber.

To obtain the latency, each message has a timestamp in its
payload that indicates the time it was sent out. The latency is
calculated by the difference between this timestamp and the
time that a subscriber receives the message. In the case of
running MQTTLoader on multi-hosts, MQTTLoader acquires
time information from the specified NTP server and uses it for
timestamps and calculation to avoid the influence of the time
offset among the hosts.

MQTTLoader also exports record of sending/receiving mes-
sages. By using the record, we can analyze the performance
in detail e.g., the temporal change of latency like Figure 3.

III. MEASURING PERFORMANCE OF MQTT BROKERS

Figure 4 shows our demonstration environment. We use
two hosts for running MQTTLoader. MQTTLoader #1 is for
publishers, and MQTTLoader #2 is for subscribers. We also
use another host for running several kinds of open-source
MQTT brokers; Mosquitto [10], HiveMQ [11], and EMQ
X [12]. These three hosts connect each other via a 1GbE wire-
speed L2 switch and can access an NTP server placed inside
the campus network. We use a computer as an SSH client to
control the three hosts.

By using the environment, we show how MQTTLoader
works. Particularly, we focus on measurement related to the
shared-subscription functionality that is one of the new fea-
tures of MQTT v5.0. Shared-subscription enables to group
subscribers so that they share receiving messages of a topic.
That is, each message of the topic is delivered to one of
the subscribers participating in the group. This could help
load distribution and improve the subscribers’ throughput. We

SSH client MQTT clients
(MQTTLoader #1)

MQTT clients
(MQTTLoader #2)

MQTT broker

L2 switch

1GbE

NTP server

Campus network

Fig. 4. Demonstration environment

Broker
Topic APublisher

MQTTLoader MQTTLoader
Subscriber

Receiving by
shared-subscription

Fig. 5. Load testing with shared-subscription functionality

show how to measure the influence of shared-subscription
by changing the number of subscribers and enabling the
functionality as shown in Figure 5.

IV. CONCLUSION

In this paper, we introduced MQTTLoader, an open-source
load testing tool for MQTT brokers. MQTTLoader sup-
ports the newest version of MQTT and capable of perfor-
mance evaluation of MQTT functionalities such as shared-
subscription. Future work includes analyzing characteristics
of actual MQTT brokers in detail and adding the capability of
load testing for distributed brokers such as [5]–[8].

REFERENCES

[1] MQTT, https://mqtt.org/ (accessed Nov. 4, 2020).
[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

Many Faces of Publish/Subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114–131, 2003.

[3] OASIS, MQTT Version 5.0. OASIS Standard, 2019.
[4] W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “mumq: A

lightweight and scalable mqtt broker,” in Proc. IEEE International
Symposium on Local and Metropolitan Area Networks, 2017, pp. 1–6.

[5] A. Detti, L. Funari, and N. Blefari-Melazzi, “Sub-linear scalability
of mqtt clusters in topic-based publish-subscribe applications,” IEEE
Transactions on Network and Service Management, vol. 17, no. 3, pp.
1954–1968, 2020.

[6] E. Longo, A. E. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni,
“Mqtt-st: a spanning tree protocol for distributed mqtt brokers,” in Proc.
IEEE International Conference on Communications, 2020, pp. 1–6.

[7] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissemination
of edge-heavy data on heterogeneous MQTT brokers,” in Proc. IEEE
International Conference on Cloud Networking, 2017, pp. 1–7.

[8] R. Banno, J. Sun, S. Takeuchi, and K. Shudo, “Interworking Layer of
Distributed MQTT Brokers,” IEICE Transactions on Information and
Systems, vol. E102.D, no. 12, pp. 2281–2294, 2019.

[9] MQTTLoader, https://github.com/dist-sys/mqttloader (accessed Nov. 4,
2020).

[10] R. A. Light, “Mosquitto: server and client implementation of the MQTT
protocol,” Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[11] HiveMQ, https://www.hivemq.com/ (accessed Nov. 4, 2020).
[12] EMQ X, https://www.emqx.io/ (accessed Nov. 4, 2020).




