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Detouring Skip Graph:
Efficient Routing via Detour Routes on Skip Graph Topology
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Skip graph is a distributed data structure that provides a scalable structured overlay network by routing in logarithmic time
for resource location and dynamic node addition/deletion. However, most of the routing paths are quite longer than the shortest
paths because each node in the network knows only its neighbors, rather than the global topology. In general, long routing paths
lead to the high latency and the low fault tolerance. Herein, we propose Detouring Skip Graph, which performs more efficient
routing through the use of detour routes. It does not require construction of extra links or modification of its topology; thereby,
it shortens the paths without additional costs while maintaining the advantages of Skip Graph. Our evaluation experiments show
that the proposed method tends to shorten the paths considerably, and in particular, that the average path length is approximately
20%–30% shorter than that of Skip Graph.
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I. INTRODUCTION

AN overlay network is an application-level logical network
built on an existing network such as the Internet. Each

node in overlay networks is organized in a decentralized man-
ner and flexibly adapts to the dynamic underlying network [1].
Especially a structured overlay constructs an autonomous dis-
tributed network according to a specific data structure or some
protocols; thereby providing reachability to target nodes, high
scalability, high fault tolerance, and some useful functions.
Owing to these properties, application to a variety of large-
scale distributed systems has been proposed; e.g. distributed
key/value stores [2], video streaming [3], and online games [4].
In recent years, application to the fields of IoT and Blockchain
is also expected [5], [6].

Skip Graph [7] is a distributed data structure that provides
a scalable structured overlay managing pairs of a key and a
value. By hashing keys, it works as a distributed hash table
(DHT) and archives good load balancing for data management.
On the other hand, even if keys are not hashed, it constructs
a balanced topology that performs routing in logarithmic time
for resource location and dynamic node addition/deletion,
unlike some typical DHTs [8], [9]. Moreover, Skip Graph
without hashing supports range queries [10], [11] as a result
of preserving the order of keys.
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However, it is still a challenge for Skip Graph to ensure
that each node takes full advantage of the existing links. The
routing paths tend to be quite longer than the shortest paths
because it knows only its neighbors, rather than the global
topology. In general, an overlay network with long routing
paths leads to the high latency and the low fault tolerance.
In a homogeneous environment such as a local area network
and a cloud network, a routing path length dominates the
latency. In contrast, note that locality awareness [12], [13],
[14], [15], which considers the proximity of the underlying
network, is also important in a non-homogeneous environment
on the Internet. Regarding fault tolerance, it is effective to use
the stabilization methods [16], [17]. However, the probability
of encountering a fault in a routing process increases as the
path length increases.

Since most application mentioned above of overlay net-
works requires the high responsiveness and high reliability,
shortening routing paths is a critical demand for overlays
including Skip Graph. We propose an extension of Skip Graph
which is called Detouring Skip Graph. It shortens the path
lengths through a more efficient use of the existing links
while maintaining the advantages of Skip Graph. Specifically,
its routing algorithm is different from that of Skip Graph in
two ways: each node 1) utilizes detour routes and 2) traverses
adjacent nodes from its maximum level.

This paper is an extended version of our previous work [18].
The main differences are comprehensive comparison experi-
ments and mathematical analysis. This paper provides compar-
isons in maximum path lengths and path length distribution,
an additional comparison target searchNLIOp, and additional
evaluation scenarios (in Section IV); and proves correctness
and complexity of the proposed method (in Section III-E
and III-F). This paper also provides all the pseudocodes
including searchDSGOp (Algorithm 3). The rest of this paper
is organized as follows. Section II presents an overview of
Skip Graph and the related work on shortening path lengths.
Section III presents Detouring Skip Graph in detail. Section IV
presents the evaluation experiments for the proposed method
and the results. Finally, Section V presents the conclusion of
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Fig. 1. An example of Skip Graph.

this study.

II. RELATED WORK

A. Skip Graph

Skip Graph is a distributed data structure designed based
on Skip List [19], and each node belongs to multiple sorted
doubly linked lists. Fig. 1 shows an example of a topology of
Skip Graph. Each node has a key in a totally ordered set and
a random string called membership vector (MV), which plays
a key role in constructing the topology of Skip Graph. In the
figure, the alphabet that are elements of MV is {0, 1}. In a
linked list at level l, the leading l digits of the MV of every
node is the same as that of all others. Particularly at level
0, all nodes belong to one linked list. Therefore, each node
belongs to O(log n) linked lists. Further, by using the same
method as Skip List, Skip Graph achieves a routing path length
of O(log n) for a query to search a key ktarget . A detailed
explanation of the routing algorithm is presented below, where
it is assumed that the keys in the linked lists are sorted in
ascending order from left to right.

Algorithm 4 is a pseudocode of routing algorithm for search
queries of Skip Graph. Suppose a node vcurrent in Skip
Graph is receiving a query searchOp to search a node
that has a specific key. The query has three information
(vstart , ktarget , lprev ): a start node vstart , a target key ktarget ,
and the level lprev at which the previous node sends the
query. If vcurrent .key , the key of vcurrent , is equal to ktarget ,
vcurrent sends a query foundOp to vstart since it means that
vcurrent is the target node. If vcurrent .key < ktarget , vcurrent
traverses the right adjacent nodes at the levels from lprev
in descending order and sends a search query searchOp to
the first adjacent node vnext where vnext .key ≤ ktarget . If
vcurrent .key > ktarget , vcurrent traverses the left adjacent
nodes and sends a search query searchOp to the next node in a
similar manner. If vcurrent .key 6= ktarget and vcurrent cannot
find such a next node, vcurrent sends a query notFoundOp

to vstart since it means that there are no target nodes in the
topology.

Fig. 2 shows a routing process when a query to search a
node whose key is ktarget = 15 is issued at a node A on
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Fig. 2. A searchOp routing to search a node whose key is 15 from a node
A.

the condition that each node follows the above method in the
topology shown in Fig. 1. Then, the key sequence of the nodes
on the routing path is (0, 4, 9, 13, 15), and the path length is
4. This routing specifies the target node is a node F .

B. Shortening Path Lengths

The path length is 4 in Fig. 2, however, there are shorter
paths in reality. For instance, if the node A chooses a node G
at level 2 instead of a node C at level 1 as the next node, the
key sequence of the nodes on the path would be (0, 18, 15),
and the path length would be 2 (which is shorter than 4). Thus,
the routing of Skip Graph is inefficient in that it cannot fully
utilize the existing links. Therefore, various approaches have
been proposed for shortening the path lengths.

In the above example, at the route from the node A to the
node G, the magnitude relationship between the key of the
current node and the target key ktarget is reversed. Routes like
this are hereinafter referred to as “detour routes.” The proposed
method (described later in detail) utilizes detour routes. It is
similar to the method proposed by Higuchi et al. [20] in terms
of use of detour routes. However, the subject of their method
is not ordinary Skip Graph but Skip Graph whose topology
is balanced by means of using linear hashing preserving the
order.

There are already several methods to shorten path lengths of
Skip Graph routing: e.g., methods that involve construction of
extra links in the original Skip Graph and appropriate routing
on the topology including the links [21], [22], and methods
that reconstruct or refine the unbalanced topology resulting
from randomly generated MVs into the ideal topology [23],
[24], [25], [26]. However, the construction of extra links
and the modification of the topology lead to an increase
in necessary transfer messages and maintenance costs. Our
proposed method has an advantage in that it shortens the path
lengths without such additional costs.

III. PROPOSED METHOD

The main idea of Detouring Skip Graph is the utilization of
detour routes. Moreover, the idea can be combined with the
technique of traversing from maximum levels. This section
presents these two techniques and the details of Detouring
Skip Graph whose routing algorithm combines them.
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Fig. 3. Should the node vcurrent select the detour route?

In the following, let K be a set of keys. To simplify,
we assume that K is a subset of real numbers1. Thus,
arithmetic operations and absolute values are well-defined on
K. Moreover, we also assume that there is at most one node
for each key. In practice, the uniqueness of keys is not always
guaranteed because replication [28], [29] is often used to
provide data availability and fault tolerance. A simple way
to eliminate duplicate keys is to add some random bits on the
right side of identical keys [30].

A. Utilizing Detour Routes

The routing algorithm of Detouring Skip Graph utilizes
detour routes. The idea is based on the following argument.

Fig. 3 shows a part of the topology of Fig. 1. Let vnext
and vlower be the right neighbors of a node vcurrent at level
1 and 0, respectively. Now, suppose vcurrent is receiving a
query to search a node whose key equals ktarget ∈ K where
9 ≤ ktarget < 18. In a situation where vcurrent follows the
routing algorithm of Skip Graph, it selects vlower as the next
node since vnext .key > ktarget and vlower .key ≤ ktarget . If
ktarget = 15, the key sequence of the nodes on the path would
be (4, 9, 13, 15), and the path length would be 3. However, in a
situation where it selects vnext as the next node, i.e., it uses the
detour route, the key sequence would be (4, 18, 15), and the
path length would be 2. The path length of the latter is shorter
than that of the former. The effectiveness of such detour routes
depends on the position of the target key; if ktarget = 13, the
path length of using the detour route would be longer than
that of using the ordinary route.

As shown in Fig. 3, it can be determined from the center
of the node sequence at the lower level (level 0 in Fig. 3)
whether vcurrent should select vnext or vlower to shorten the
path length. This section presents the routing algorithm that
each node determines the next node based on a detour criterion
at each level.

Algorithm 1 is a pseudocode of this algorithm. Herein,
vcurrent traverses the adjacent nodes in the same way
as Skip Graph when a node vcurrent receives a query
searchDROp. However, if vcurrent judges that using a de-
tour route is better than not using it, vcurrent selects the
end node of the detour route as the next node. Function
closeToRight(ktarget , kleft , kright) can be used to make this
judgment. Let Iright be {k ∈ K | k ≥ kright}. The function

1As a mathematical fact, any countable totally ordered set can be order
embedded into the set of rational numbers [27], which is a subset of real
numbers.

Algorithm 1: searchDROp in node vcurrent
/* utilizing Detour Routes */

1 upon receiving 〈searchDROp, vstart , ktarget , lprev 〉 then
2 if vcurrent .key = ktarget then
3 send 〈foundOp, vcurrent〉 to vstart ;
4 return;
5 else if vcurrent .key < ktarget then
6 for lcurrent ← lprev downTo 0 do
7 vnext ← vcurrent .neighbors[R][lcurrent ];
8 if vnext = ⊥ then
9 continue;

10 if vnext .key ≤ ktarget then
11 send 〈searchDROp, vstart , ktarget , lcurrent〉 to

vnext ;
12 return;
13 else if lcurrent > 0 then
14 vlower ← vcurrent .neighbors[R][lcurrent − 1];
15 if closeToRight(ktarget , vlower .key , vnext .key)

then
16 send 〈searchDROp, vstart , ktarget , lcurrent〉 to

vnext ;
17 return;

18 else
19 for lcurrent ← lprev downTo 0 do
20 vnext ← vcurrent .neighbors[L][lcurrent ];
21 if vnext = ⊥ then
22 continue;

23 if vnext .key ≥ ktarget then
24 send 〈searchDROp, vstart , ktarget , lcurrent〉 to

vnext ;
25 return;
26 else if lcurrent > 0 then
27 vlower ← vcurrent .neighbors[L][lcurrent − 1];
28 if ¬ closeToRight(ktarget , vnext .key , vlower .key)

then
29 send 〈searchDROp, vstart , ktarget , lcurrent〉 to

vnext ;
30 return;

31 send 〈notFoundOp, vcurrent〉 to vstart ;

32 function closeToRight(ktarget , kleft , kright)
33 kmid ← mid(kleft , kright);
34 return kmid < ktarget ;

returns true if the signed distance from ktarget to Iright
is smaller than that from mid(kleft , kright) to Iright , i.e.,
kright − ktarget < kright −mid(kleft , kright); otherwise, it re-
turns false . Intuitively, it means that ktarget is closer to kright
than mid(kleft , kright). Further, mid is a design parameter
defined as a function before the construction of the topology to
satisfy that the following (1) and (2) are approximately equal
for the set V of all participating nodes at any point in time
and any k1, k2 ∈ K (k1 ≤ k2);

#
{
k ∈ K

∣∣ k1 ≤ k ≤ kmid ∧∃ v ∈ V, v.key = k
}

(1)

#
{
k ∈ K

∣∣ kmid ≤ k ≤ k2 ∧∃ v ∈ V, v.key = k
}

(2)

where kmid = mid(k1, k2). (1) means the number of nodes
v where v.key ∈ [k1, kmid ], and (2) means the number of
nodes v where v.key ∈ [kmid , k2]. Thus, mid(k1, k2) implies
the center between k1 and k2 for the key distribution of the
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participating nodes. We give some examples of defining mid .
Let v.key , the key of a node v, be regarded as a random
variable.

If

K = {0, 1, . . . , n− 1} and P{v.key = k} =
1

n
, (3)

then
mid(k1, k2) :=

k1 + k2

2
. (4)

In Fig. 3 and for this mid definition, mid(9, 18) = 27
2 holds,

and thus closeToRight(ktarget , 9, 18) ⇐⇒ 27
2 < ktarget .

This means the target node is located to the right of the
estimated center if 27

2 < ktarget , and is located to the left if
ktarget ≤ 27

2 .
Next, if

K = [α, β] and P{v.key ≤ k} =

∫ k

α

cκγdκ (5)

with constants α, β, γ, c ∈ R where α < β, γ > 1 and∫ β
α
ckγdk = 1; then

E
[

(1)
|V |

]
= P{k1 ≤ v.key ≤ kmid}

= c
kγ+1
mid − k

γ+1
1

γ + 1

(6)

and

E
[

(2)
|V |

]
= P{kmid ≤ v.key ≤ k2}

= c
kγ+1

2 − kγ+1
mid

γ + 1
.

(7)

When (1) and (2) are approximately equal, i.e.:

c
kγ+1
mid − k

γ+1
1

γ + 1
= c

kγ+1
2 − kγ+1

mid

γ + 1
, (8)

we get

kmid =

(
kγ+1

1 + kγ+1
2

2

) 1
γ+1

. (9)

Thus, in this case, we should define (9) as mid .
By defining mid in this way, mid(vlower .key, vnext .key)

or mid(vnext .key, vprev .key) refers to a key estimation of the
center of the lower-level node sequence. Thus, closeToRight
plays the appropriate role of a detour judgment.

In practice, it is difficult to obtain the distribution of the
keys beforehand. However, from the evaluation experiments
presented in Section IV, we observed that it is effective in
many cases for shortening path lengths by defining mid as:

mid(k1, k2) :=
k1 + k2

2
. (10)

Fig. 4 shows a routing process when a query to search a
node whose key is ktarget = 15 is issued at a node A on the
condition that each node follows Algorithm 1 in the topology
shown in Fig. 1. The key sequence of the nodes on the path
is (0, 18, 15), and the path length is 2, which is shorter than
that of Fig. 2.
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Fig. 4. A searchDROp routing to search a node whose key is 15 from a
node A where mid(k1, k2) =

k1+k2
2

.

B. Traversing from the Maximum Level

In addition to utilizing detour routes, we can improve the
routing of Skip Graph by making each node to traverse from
the maximum level.

As discussed in Section II-A, in the routing of Skip Graph,
a node vcurrent traverses the adjacent nodes at the levels from
the reception level lprev in descending order and determines
the first adjacent node vnext that satisfies the condition as the
next node. The levels are monotonically decreasing for the en-
tire routing. However, there are cases where an adjacent node
at a level larger than lprev satisfies the condition. Moreover,
the larger the level at which vcurrent sends a query to the next
node, the larger the difference in the keys between adjacent
nodes. Therefore, the difference between the key of the next
node and the target key ktarget when traversing from level
vcurrent .maxLevel is smaller than or equal to the difference
when traversing from level lprev , where v.maxLevel is the
maximum level of a node v. Thus, it is effective in shortening
the path lengths that each node traverses from its maximum
level.

Algorithm 2 is a pseudocode of this algorithm. When a
node vcurrent receives a query searchMLOp, vcurrent traverses
the adjacent nodes from vcurrent .maxLevel and sends a query
searchMLOp to the first node that satisfies the condition. This
routing differs from that of Skip Graph only in the start level
of traversing. Note that it is possible to use binary search for
finding a next node instead of linear search, which is faster,
but this code uses the latter for simplicity.

Fig. 5 shows a routing process when a query to search a
node whose key is ktarget = 15 is issued at a node A on the
condition that each node follows Algorithm 2 in the topology
shown in Fig. 1. The key sequence of the nodes on the path
is (0, 4, 9, 15), and the path length is 3, which is shorter than
that of Fig. 2. While searchMLOp uses a vertical link from
each level toward the maximum level at each node, the routing
algorithm searchOp of Skip Graph does not use it. However,
the change does not affect the topology because vertical links
are virtual links involving only the software process of the
node. Thus, searchMLOp requires no modification of the
topology.

It should be noted that Algorithm 2 has the disadvantage of
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Algorithm 2: searchMLOp in node vcurrent
/* traversing from Max Level */

1 upon receiving 〈searchMLOp, vstart , ktarget〉 then
2 if vcurrent .key = ktarget then
3 send 〈foundOp, vcurrent〉 to vstart ;
4 return;
5 else if vcurrent .key < ktarget then
6 for lcurrent ← vcurrent .maxLevel downTo 0 do
7 vnext ← vcurrent .neighbors[R][lcurrent ];
8 if vnext = ⊥ then
9 continue;

10 if vnext .key ≤ ktarget then
11 send 〈searchMLOp, vstart , ktarget〉 to vnext ;
12 return;

13 else
14 for lcurrent ← vcurrent .maxLevel downTo 0 do
15 vnext ← vcurrent .neighbors[L][lcurrent ];
16 if vnext = ⊥ then
17 continue;

18 if vnext .key ≥ ktarget then
19 send 〈searchMLOp, vstart , ktarget〉 to vnext ;
20 return;

21 send 〈notFoundOp, vcurrent〉 to vstart
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Fig. 5. A searchMLOp routing to search a node whose key is 15 from a
node A.

increasing the computation costs incurred between receiving
a query and determining the next node, although it has the
advantage of shortening the path lengths. Let lMAX be the
maximum value of the maximum levels of all nodes, which is
O(log n), and let H be the path length, which is O(log n).
Then, the sum of the time required for each node on a
routing path to determine the next node until finishing a
routing process, except for the communication time and the I/O
processing time, is O(lMAX +H) = O(log n) for Skip Graph.
On the other hand, in the case of the following Algorithm 2,
it is O(H · lMAX ) = O(log2 n). Especially when using
binary search, it is O(H log lMAX ) = O(log n · log(log n)).
These are inferior to Skip Graph in terms of computational
complexity. However, the time taken for a routing process is
typically dominated by the communication time, hence it is
more important to shorten path lengths in most cases.

Algorithm 3: searchDSGOp in node vcurrent
/* Detouring Skip Graph */

1 upon receiving 〈searchDSGOp, vstart , ktarget〉 then
2 if vcurrent .key = ktarget then
3 send 〈foundOp, vcurrent〉 to vstart ;
4 return;
5 else if vcurrent .key < ktarget then
6 for lcurrent ← vcurrent .maxLevel downTo 0 do
7 vnext ← vcurrent .neighbors[R][lcurrent ];
8 if vnext = ⊥ then
9 continue;

10 if vnext .key ≤ ktarget then
11 send 〈searchDSGOp, vstart , ktarget〉 to vnext ;
12 return;
13 else if lcurrent > 0 then
14 vlower ← vcurrent .neighbors[R][lcurrent − 1];
15 if closeToRight(ktarget , vlower .key , vnext .key)

then
16 send 〈searchDSGOp, vstart , ktarget〉 to vnext ;
17 return;

18 else
19 for lcurrent ← vcurrent .maxLevel downTo 0 do
20 vnext ← vcurrent .neighbors[L][lcurrent ];
21 if vnext = ⊥ then
22 continue;

23 if vnext .key ≥ ktarget then
24 send 〈searchDSGOp, vstart , ktarget〉 to vnext ;
25 return;
26 else if lcurrent > 0 then
27 vlower ← vcurrent .neighbors[L][lcurrent − 1];
28 if ¬ closeToRight(ktarget , vnext .key , vlower .key)

then
29 send 〈searchDSGOp, vstart , ktarget〉 to vnext ;
30 return;

31 send 〈notFoundOp, vcurrent〉 to vstart ;

C. Detouring Skip Graph: Combining Two Improvements

Because the two improved routing algorithms described
above are independent changes from the routing algorithm
of Skip Graph, an algorithm combining them can be defined
naturally. We refer an extension of Skip Graph that performs
such routing as Detouring Skip Graph.

Algorithm 3 is a pseudocode of this routing algorithm.
When node vcurrent receives a query searchDSGOp, vcurrent
traverses the adjacent nodes from vcurrent .maxLevel in the
same way as described in Section III-B and sends a query
searchDSGOp to the first node that satisfies the condition. In
the process, searchDSGOp uses detour routes based on the
detour judgment as described in Section III-A.

Fig. 6 shows a routing process when a query to search a
node whose key is ktarget = 12 is issued at a node A on the
condition that each node follows Algorithm 3 in the topology.
The key sequence of the nodes on the path is (0, 18, 15, 12),
and the path length is 3.

From the foregoing, Detouring Skip Graph can bring about
the shortening of the path lengths for search queries. Unlike
the existing methods discussed in Section II-B, it does not
require construction of extra links or modification of its



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

110... 011... 100... 000... 010... 001... 111...

0

3

4

12 13 15

18

0 18
3 13

4 12 15

0 3 4 12 13 15 18

Level 2

Level 1

Level 0

0
3

12
13

15 18
Level 3

Node A Node B Node C Node F Node G Node H Node I

101...

7

7

7
Node D

011...

8

8

8

Node E

74

8
 

010...

20

20

20

20

Node J

110...

21

21

21

21

Node K

 

 

Fig. 6. A searchDSGOp routing to search a node whose key is 12 from a
node A where mid(k1, k2) =
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topology. Therefore, there is no increase in message transfer
and management costs, and it maintains the good properties
of Skip Graph. Additionally, the extension is simple and can
be easily applied to existing Skip Graph.

D. Reachability of Detouring Skip Graph

Detouring Skip Graph has a property that the key sequence
of the nodes on a routing path is not necessarily monotonic
in order since the path is via detour routes, while Skip Graph
does not have the property. You might consider that the routing
process may lead to an infinite loop. However, the reachability
is guaranteed, which is proved in this section.

Suppose a search query whose target key is k is being
issued. Then, we introduce the following notations:
• Let (v1, v2, . . .) be the node sequence on the routing path.
• Sk := { x ∈ K | x < k }.
• Tk := { x ∈ K | x > k }.
• Let (vs1 , vs2 , . . .) be the subsequence of (vi)i, whose

elements are all vi satisfying vi.key ∈ Sk.
• Let (vt1 , vt2 , . . .) be the subsequence of (vi)i, whose

elements are all vi satisfying vi.key ∈ Tk.
• Let binary relation ≺k, �k on Sk ∪ {k} × Tk ∪ {k} be:

≺k:=

{
(x, y) ∈
Sk∪{k} × Tk∪{k}

∣∣∣∣∣ closeToRight(k, x, y)

}
(11)

�k:=

{
(x, y) ∈
Sk∪{k} × Tk∪{k}

∣∣∣∣∣ ¬closeToRight(k, x, y)

}
.

(12)

Intuitively, x ≺k y implies that y is closer to k than x,
and x �k y implies that x is closer to k than y.

The query reaches the target node if and only if (vi)i is
a finite sequence. Thus, it is sufficient to show that (vi)i is
finite. If both (vsi .key)i and (vti .key)i are strictly approaching
k (i.e., they are strictly increasing and strictly decreasing,
respectively), (vi.key)i converges to the key of the target node
in finite steps and (vi)i is a finite sequence.

Next, to show the strict monotonicity of each subsequence,
the function mid used as the detour judgment must exhibit
the following properties.

Property 1:
∀x, y ∈ K,x ≤ y ⇒ x ≤ mid(x, y) ≤ y (13)

Property 2: ∀x, x′, y, y′ ∈ K,

max(x, x′) ≤ y ⇒ [x ≤ x′ ⇔ mid(x, y) ≤ mid(x′, y)] (14)
x ≤ min(y, y′)⇒ [y ≤ y′ ⇔ mid(x, y) ≤ mid(x, y′)] (15)

These properties are satisfied whenever mid is defined as the
median estimation based on any probability distribution, e.g.,
mid(x, y) := x+y

2 . Then, the following lemmas hold.
Lemma 1: ∀x, x′ ∈ Sk ∪ {k},∀ y, y′ ∈ Tk ∪ {k},

x ≺k y ⇒ x′ ≤ x⇒ x′ ≺k y (16)
x ≺k y ⇒ y′ ≤ y ⇒ x ≺k y′ (17)
x �k y ⇒ x ≤ x′ ⇒ x′ �k y (18)
x �k y ⇒ y ≤ y′ ⇒ x �k y′ (19)

Proof: Suppose x ≺k y and x′ ≤ x. From
max(x, x′) ≤ k ≤ y and Property 2, we have
mid(x′, y) ≤ mid(x, y). Since x ≺k y means mid(x, y) < k,
mid(x′, y) < k (⇔ x′ ≺k y) holds. The other propositions
can also be shown in the same way.

Lemma 2: ∀x1, x2 ∈ Sk ∪ {k},∀ y1, y2 ∈ Tk ∪ {k},[∃x ∈ Sk ∪ {k} s.t. (x ≺k y1 ∧ x �k y2)
]
⇒ y1 < y2 (20)[∃y ∈ Tk ∪ {k} s.t. (x1 �k y ∧ x2 ≺k y)
]
⇒ x1 > x2 (21)

Proof: Suppose there exists x ∈ Sk such that x ≺k y1

and x �k y2. If y1 ≥ y2, then x �k y1 from x �k y2 and
Lemma 1, however it contradicts x ≺k y1. Therefore, we have
that y1 < y2. The latter proposition can also be established in
the same way.

These lemmas derive the following theorem.
Theorem 1: (vsi .key)i and (vti .key)i are strictly increasing

and strictly decreasing, respectively.
Proof: It is sufficient for each step i to show that:{
j > 1⇒ vsj .key > vsj−1

.key ( if ∃j s.t. sj = i)

j > 1⇒ vtj .key < vtj−1 .key ( if ∃j s.t. tj = i),
(22)

where step i represents the process on the i-th node in the
routing path. This can be shown using mathematical induction.

Suppose (22) holds at step 1, 2, . . . , i.
1) If vi.key = k, then step i+ 1 does not exist because the

routing process is complete (and the current node sends
a query foundOp to the start node).

2) If vi.key ∈ Sk, then the four cases are
considered: (i) vi+1.key ∈ Sk, (ii) vi+1.key ∈ Tk,
(iii) vi+1.key = k, and (iv) vi+1.key does not
exist. In case (i) and (iii), (22) holds at step i+ 1
because vi.key < vi+1.key and vi+1.key /∈ Sk ∪ Tk,
respectively. In case (iv), step i + 1 does not exist
because the routing process is complete (and the current
node sends a query notFoundOp to the start node).
In case (ii), because a detour route is used, exist j
and x ∈ Sk ∪ {k} such that tj = i+ 1, vi.key < x,
and x ≺k vtj .key . If j > 1, then it implies that a
detour route was used at step tj−1 and that no detour
route was used at step tj−1 + 1, tj−1 + 2, . . . , i− 1
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owing to the definition of subsequence (vtj′ )j′ .
Thus, vtj−1+1.key , vtj−1+2.key , . . . , vi.key ∈ Sk, and
there exists y ∈ Tk ∪ {k} such that y < vtj−1 .key
and vtj−1+1.key �k y. From Lemma 1, we
have vtj−1+1.key �k vtj−1

.key . In addition,
vtj−1+1.key < vtj−1+2.key < · · · < vi.key holds
by the induction hypothesis. From Lemma 1, we have
vi.key �k vtj−1 .key . Thus, vtj .key < vtj−1 .key holds
because of Lemma 2, i.e., (22) holds at step i+ 1.

3) If vi.key ∈ Tk, then (22) holds at step i+ 1, which can
be shown in the same way as 2).

Therefore, the reachability for any search query is guaran-
teed, regardless of whether there is a node with a target key
k in the topology.

E. Correctness of Detouring Skip Graph

In this section, we prove the correctness of any search query
of Detouring Skip Graph. Thus, the goal of this section is to
ensure that a search operation returns a query foundOp if the
target node v exists in the topology and that it returns a query
notFoundOp if the target node v does not exist.

From III-D, the node sequence (vi)i on a routing path is
a finite sequence. Let the length of the sequence be M , i.e.,
vM denotes the last node. Moreover, Algorithm 3 indicates
that vM sends foundOp if vM .key = k and that vM sends
notFoundOp if vM .key 6= k. Thus, the correctness is guaran-
teed if the following theorem holds.

Theorem 2:

vM .key = k ⇒∃ v ∈ V, v.key = k (23)

vM .key 6= k ⇒∀ v ∈ V, v.key 6= k (24)

where V denotes the participating nodes (when vM is in the
routing process).

Proof: (23) holds since vM ∈ V . Suppose vM .key 6= k.
It means that vM cannot find a next node from the adjacent
nodes of vM .

1) If vM .key ∈ Sk:

a) If there exists the right adjacent node of vM at
level 0, let u be the node. Then, u.key ∈ Tk since
vM cannot find a next node. There is only one
sorted linked list at level 0, and the set of all the
nodes equals V . It means that there does not exist
v ∈ V such that vM .key < v.key < u.key .
Thus, ∀v ∈ V, v.key ∈ Sk ∪ Tk, thereby
∀v ∈ V, v.key 6= k holds.

b) Otherwise, vM has no right adjacent node.
It means that vM .key is the largest key in
the topology. Thus, ∀v ∈ V, v.key ∈ Sk, thereby
∀v ∈ V, v.key 6= k holds.

2) If vM .key ∈ Tk, ∀v ∈ V, v.key 6= k holds, which can
be shown in the same way as 1).

Therefore, (24) holds.

F. Complexity of Detouring Skip Graph

The search query in Skip Graph with n nodes takes expected
O(log n) messages [7]. In this section, we prove that the
message complexity for a search query of Detouring Skip
Graph is also expected O(log n).

We introduce the following notations for Detouring Skip
Graph with alphabets Σ.
• Let m(v) ∈ Σ∞ be the membership vector of a node
v ∈ V .

• Let |w| be the length of a word w, with |w| = ∞ if
w ∈ Σ∞.

• Write w ↑ i for the prefix of a word w of length i.
• Write w1 ∧ w2 for the longest common prefix of words
w1 and w2.

Suppose a search query whose target key is k is being is-
sued. Without loss of generality, we assume that v1.key ∈ Sk.
Then, the goal of this section is to ensure that the number M
of nodes in the routing path is expected O(log n) since the
query takes O(M) messages.

Lemma 3: ∀i, j,

si < tj ⇒ vsi .key ≺k vtj .key (25)
si > tj ⇒ vsi .key �k vtj .key (26)

Proof: These propositions hold from Lemma 1 and The-
orem 1.

Lemma 4: A sequence (|m(v1) ∧m(vi)|)Mi=1 is weakly
decreasing.

Proof: Suppose, for proof by contradiction, that
∃i ∈ {1, . . . ,M − 1}
s.t. |m(v1) ∧m(vi+1)| > |m(v1) ∧m(vi)| .

(27)

Let l be |m(v1) ∧m(vi)| and let j be the maximum number of
j′ ∈ {1, . . . , i− 1} satisfying |m(v1) ∧m(vj′)| ≥ l + 1 (there
exists such a j since |m(v1) ∧m(v1)| =∞ ≥ l + 1).

1) If vj .key ∈ Sk, then from |m(v1) ∧m(vj)| ≥ l + 1
and |m(v1) ∧m(vj+1)| ≤ l, we have l1 ≤ l where
l1 = |m(vj) ∧m(vj+1)|. It means that the node vj+1

is the right adjacent node of vj at level l1(≤
l). In addition, from |m(v1) ∧m(vj)| ≥ l + 1 and
|m(v1) ∧m(vi+1)| ≥ l + 1, we have l2 ≥ l + 1 where
l2 = |m(vj) ∧m(vi+1)|. It means that there exists a
right adjacent node u of vj at level l2(≥ l+1) such that
vj+1.key < k < u.key ≤ vi+1.key (possibly u = vi+1).
From Lemma 3 and Lemma 1, vj+1.key ≺k u.key
holds. Let u′ be the right adjacent node of vj at level
l1 + 1, and k < u′.key ≤ u.key . From Lemma 1,
vj+1.key ≺k u′.key holds. On the other hand, since vj
selects vj+1 as the next node, vj+1.key �k u′.key holds.
This contradiction proves that ∀i ∈ {1, . . . ,M − 1},
|m(v1) ∧m(vi+1)| ≤ |m(v1) ∧m(vi)|, i.e., a sequence
(|m(v1) ∧m(vi)|)Mi=1 is weakly decreasing.

2) If vj .key ∈ Tk, then we can prove it in the same way
as 1).

Lemma 5: Let (ui)i be the node sequence on the routing
path for a searchOp query whose target key is k issued at



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

the node v1(= vs1). Then, the node sequence (vsi)i is a
subsequence of (ui)i.

Proof: (vsi .key)i is strictly increasing from Theorem 1,
and (ui.key)i is also strictly increasing. Thus, it is sufficient
to show that {vsi}i ⊂ {ui}i.

For each level l, let Wk,l be:

Wk,l :=


w ∈ V

∣∣∣∣∣∣∣∣∣∣∣∣

|m(v1) ∧m(w)| = l ∧
v1.key < w.key ≤ k ∧
∀w′ ∈ V,[
|m(v1) ∧m(w′)| ≥ l + 1⇒
w′.key ≤ k ⇒ w′.key < w.key

]


.

(28)
From routing algorithm of searchOp, we have
{ui}i = (

⊔∞
l=0Wk,l) t {v1} where t denotes disjoint

union. It means that it is sufficient to show that: for each
level l,

{ vsi | |m(v1) ∧m(vsi)| = l } ⊂Wk,l. (29)

Herein, fix any level l ∈ {0, 1, . . .}. If there does not i
satisfying |m(v1) ∧m(vsi)| = l, (29) holds. Suppose there
exists such a i, and let j be the minimum number of i
satisfying it. From Lemma 4 and Theorem 1, the following
proposition holds:

(29)⇔
¬∃w ∈ V s.t.
|m(v1) ∧m(w)| ≥ l + 1 ∧ vsj .key ≤ w.key ≤ k.

(30)
Suppose, for proof by contradiction, that

∃w ∈ V s.t. |m(v1) ∧m(w)| ≥ l + 1 ∧ vsj .key ≤ w.key ≤ k.
(31)

Let ι be the maximum number of i satisfying
|m(v1) ∧m(vi)| ≥ l + 1, and let l′ be |m(v1) ∧m(vι)|.

1) If vsj−1 ∈ Sk, then ι = sj − 1 = sj−1, i.e., the node vι
selects the right adjacent node vsj at level l as the next
node. On the other hand, from the hypothesis (31), the
node vι should select the right adjacent node (6= vsj ) at
level l′ as the next node. This contradiction proves (29).

2) If vsj−1 ∈ Tk:
a) If ι = sj−1, then the node vι has the left adjacent

node vsj at level l and the left adjacent node
w at level l′(> l) where vsj .key < w.key < k.
It contradicts a property of the topology of Skip
Graph. Thus, (29) holds.

b) If ι < sj − 1, the node vι selects the left adjacent
node vι+1 at level l as the next node where
vι+1.key ∈ Tk. In addition, vι has the left adjacent
node w at level l′ where vsj .key ≤ w.key ≤ k.
From Lemma 3, we have vsj .key �k vι+1. From
Lemma 1, we have w.key �k vι+1. Thus, the node
vι should select the left adjacent node w at level l′

as the next node instead of vι+1. This contradiction
proves (29).

Therefore, (vsi)i is a subsequence of (ui)i.
Lemma 6: The length of (vsi)i is expected O(log n).
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Fig. 7. A topology G′ for the topology G, the start node v1 = A, and the
target key k = 12 of Fig. 6.

Proof: From Lemma 5, the lengths of (vsi)i is expected
O(log n) since the routing path length of searchOp is ex-
pected O(log n).

Lemma 7: Suppose there exists t1, in other words, at most 1
detour route is used in the routing of searchDSGOp. Let (ui)i
be the node sequence on the routing path for a searchOp

query whose target key is k issued at the node vt1 . Then, the
node sequence (vti)i is a subsequence of (ui)i.

Proof: Consider a search query whose target key is k is
being issued at the node vt1 . Then, we can prove it in the
same way as Lemma 5.

We would like to show that the length of (vti)i is expected
O(log n). However, we cannot prove it in the same way as
Lemma 6 because a node vt1 is determined by the start node
v1 and the topology dependent on random numbers. Herein,
let G be the current topology and we define a topology G′ for
G, v1, and k as follows:

• Let K ′ := K ∪ {∞} where ∀x ∈ K,x <∞.
• Let v′∞ be a node with v′∞.key = ∞ and m(v′∞) =
m(v1).

• Let V ′ := { v ∈ V | v.key ∈ Tk ∪ {k} } ∪ {v′∞}.
• Let G′ be the Skip Graph topology determined by V ′.

For example, if G, v1, and k are the topology, the start node,
and the target key in Fig. 6, respectively; the topology of
Fig. 7 shows G′. Then, the following lemmas hold.

Lemma 8: Let (u′i)i be the node sequence on the routing
path for a searchOp query whose target key is k issued at the
node v′∞ in the topology G′. Then, the node sequence (vti)i
is a subsequence of (u′i)i.

Proof: If there does not exist t1, then (vti)i is a subse-
quence of (u′i)i since (vti)i is empty.

Suppose there exists t1. Let (ui)i be the node sequence on
the routing path for a searchOp query whose target key is
k issued at the node vt1 in the topology G. From Lemma 7,
(vti)i is a subsequence of (ui)i. Thus, it is sufficient to show
that (u′i)i contains a node vt1 , because it means that (ui)i
equals the contiguous subsequence of (u′i)i where the first
element is vt1 and the last element is the last node of (u′i)i.

Let v′max be the node with the maximum key in
arg maxv′∈V ′−{v′∞} { |m(v1) ∧m(v′)| } (in Fig. 7, v′max de-
notes a node K). From the definition, v′max equals a node
u′2.

1) If |m(v1) ∧m(vt1)| = |m(v1) ∧m(v′max )|, then
vt1 .key ≤ v′max .key holds from a property of the
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topology G. Thus from routing algorithm of searchOp,
(u′i)i contains vt1 .

2) If |m(v1) ∧m(vt1)| < |m(v1) ∧m(v′max )|, for
each vi (i = 1, . . . , t1 − 2), there does not
exist a right adjacent node w of vi where
w.key ∈ Tk ∧ |m(v1) ∧m(w)| > |m(v1) ∧m(vt1)| ∧
vi+1.key �k w.key . From Lemma 2, Lemma 3,
and a property of the topology G, it means
that there does not exist a node w ∈ V
where |m(v1) ∧m(w)| > |m(v1) ∧m(vt1)| ∧
k ≤ w.key ≤ vt1 .key . Thus from routing algorithm of
searchOp, (u′i)i contains vt1 .

Therefore, (vti)i is a subsequence of (u′i)i.
Lemma 9: The length of (vti)i is expected O(log n).

Proof: From Lemma 8, it is sufficient to show that the
length of (u′i)i is expected O(log n).

Let {U ′w}w∈Σ∗ be the family of doubly linked lists
of the topology G′. Each U ′w denotes the set of
nodes v ∈ V with m(v) ↑ |w| = w. Then, the sequence
U ′m(v∞)↑0, U

′
m(v∞)↑1, U

′
m(v∞)↑2, . . . is the skip list restriction

of the node v∞. Hence, we can show the length of (u′i)i is
expected O(log n) in the same way as the proof for message
complexity of searchOp given in [7].

Theorem 3: The routing path length M of searchDSGOp is
expected O(log n).

Proof: From definitions of (vsi)i and (vti)i,

M ≤
[

the length of (vsi)i

]
+
[

the length of (vti)i

]
+ 1.

(32)
From Lemma 6 and Lemma 9, the lengths of (vsi)i and
(vti)i are expected O(log n), respectively. Therefore, M is
also expected O(log n).

IV. EVALUATION

We evaluated the path lengths by conducting routing simu-
lations and observed the effect of the proposed method. The
network topologies for the experiments are constructed as Skip
Graph topologies with the following key generation methods:
• Generated by uniform distribution.
• Generated by power-law distribution.
• Random English titles on Wikipedia.
• Hashed Random English titles on Wikipedia.

It is important to evaluate path lengths for various key dis-
tributions because the routing paths depend on not only the
topology, but also the key distribution for participating nodes.

Moreover, the routing algorithms used as the evalu-
ation subjects are searchOp, searchDROp, searchMLOp,
searchDSGOp, and searchNLIOp. Table I is a correspondence
table between the names of the algorithms and the section
numbers with their descriptions.

Herein, we introduce a routing algorithm searchNLIOp,
which is “ideal” for using detour routes. In Detouring Skip
Graph, mid is set as a function before the construction of the
topology to estimate the key of the center of the lower-level
node sequence. However, each node can perfectly determine
the use of detour routes without the estimation if the node
sequence information is known. We define searchNLIOp as

TABLE I
ROUTING ALGORITHMS USED AS THE EVALUATION SUBJECTS.

searchOp : Skip Graph (Sec. II-A)
searchDROp : Utilizing detour routes (Sec. III-A)
searchMLOp : Traversing from max level (Sec. III-B)
searchDSGOp : Detouring Skip Graph (Sec. III-C)
searchNLIOp : Using node list information (Sec. IV)

a routing algorithm performing such perfect detour judgment
and traversing from maximum levels. Although this routing is
not practical due to the additional large cost of obtaining the
node sequence information, we use it as a comparison target
in the experiments to show the limitations of the proposed
method.

A. Generated by Uniform Distribution

We used pseudorandom numbers to generate keys so that
the keys of participating nodes follow uniform distribution
P{v.key = k} = 1

230 (k ∈ {0, 1, . . . , 230 − 1}) where v.key
is the key of a node v regarded as a random variable. Then,
the center estimation mid for this distribution is

miduniform(k1, k2) :=
k1 + k2

2
. (33)

This evaluation gives the effectiveness of the proposed method
on unbiased key distribution.

On the topology constructed based on the keys gener-
ated by the above method, every node issued 100 search
queries whose target keys are the keys of randomly sam-
pled nodes. We plotted the average and the maximum
of all routing path lengths for these queries in Fig. 8
and Fig. 9, respectively. The horizontal axis represents the
number of participating nodes in increments of 100, and
the vertical axis represents the average and the maximum
path length, respectively. Each line corresponds to each
routing method, where searchDSGOp(mid : uniform) and
searchDROp(mid : uniform) represent routing that involves
the use of miduniform as a center estimation for the keys.
Further, every routing method is executed on the same topol-
ogy for each number of nodes; and each topology is built by
adding nodes to the existing topology, rather than rebuilt from
scratch each time. These conditions are the same for the other
experiments discussed in the subsequent sections.

Moreover, we plotted the path length distribution on the
above experiments where the number of participating nodes is
10000 in Fig. 10. The horizontal axis represents path lengths,
and the vertical axis represents the frequency of each path
length.

As a result in Fig. 8, the average path lengths are shorter
in the order of searchNLIOp, searchDSGOp(mid : uniform),
searchDROp(mid : uniform), searchMLOp, and searchOp.
Furthermore, searchDSGOp(mid : uniform) of Detouring
Skip Graph shortens the average path lengths by about 30%
compared to searchOp of Skip Graph, and searchNLIOp

shortens them by about 32% compared to searchOp. It shows
that Detouring Skip Graph takes advantage of detour routes to
shorten the path lengths. Similar trends are shown in Fig. 9
and Fig. 10. The proposed method also provides more stable
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Fig. 8. Average path lengths on a topology whose keys were generated by
uniform distribution. The target keys are the keys of randomly sampled nodes.
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Fig. 9. Maximum path lengths on a topology whose keys were generated
by uniform distribution. The target keys are the keys of randomly sampled
nodes.
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Fig. 10. Path length distribution on a topology whose keys were generated
by uniform distribution where n = 10000. The target keys are the keys of
randomly sampled nodes.

performance for any queries compared to Skip Graph since
the standard deviations of the path lengths of searchOp and
searchDSGOp(mid : uniform) are 4.59 and 2.78 in Fig. 10,
respectively.

In addition, we conducted the same experiment on the
condition that the target keys ktarget ∈ {0, 1, . . . , 230 − 1} are
generated by uniform distribution for comparison purposes.
In this evaluation, since the maximum number of nodes is
104, the probability that a target key is a non-existent key is
1− 104

230 ' 1. Thus, there does most likely not exist a target
node for each target keys.
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Fig. 11. Average path lengths on a topology whose keys were generated by
uniform distribution. The target keys are generated by uniform distribution.
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Fig. 12. Maximum path lengths on a topology whose keys were generated by
uniform distribution. The target keys are generated by uniform distribution.
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Fig. 13. Path length distribution on a topology whose keys were generated
by uniform distribution where n = 10000. The target keys are generated by
uniform distribution.

Fig. 11, Fig. 12, and Fig. 13 show the evaluation re-
sult. searchDSGOp(mid : uniform) of Detouring Skip Graph
shortens the average path lengths by about 33% compared to
searchOp of Skip Graph, and searchNLIOp shortens them
by about 36% compared to searchOp. The result is similar
to those for existent keys. We consider that it is because the
distribution of target keys is the same in the two experiments.

B. Generated by Power-Law Distribution

We converted pseudorandom numbers to generate keys so
that the keys of participating nodes follow power-law distribu-
tion P{v.key ≤ k} =

∫ k
0
f(κ)dκ (0 ≤ k ≤ 230) where v.key
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TABLE II
AVERAGE PATH LENGTHS ON A TOPOLOGY WHOSE KEYS WERE

GENERATED BY POWER-LAW DISTRIBUTION WHERE
n = 100, 1000, 10000. THE TARGET KEYS ARE GENERATED BY UNIFORM

DISTRIBUTION.

n = 100 1000 10000
searchOp 4.87 8.17 11.50
searchDROp(mid : uniform) 4.10 6.30 8.47
searchDROp(mid : power) 4.09 6.27 8.45
searchMLOp 4.42 7.32 10.27
searchDSGOp(mid : uniform) 3.86 6.02 8.08
searchDSGOp(mid : power) 3.85 6.00 8.06
searchNLIOp 3.79 5.82 7.79

is the key of a node v regarded as a random variable, f denotes
a probability density function f(k) = ck10 (0 ≤ k ≤ 230), and
c denotes a constant that satisfies

∫ 230

0
f(k)dk = 1. Then,

from (9), the center estimation mid for this distribution is

midpower (k1, k2) :=

(
k10+1

1 + k10+1
2

2

) 1
10+1

. (34)

The key distribution may be biased in the actual use of the
proposed method without hashed keys. The purpose of using
power-law distribution is to evaluate the effectiveness of the
proposed method on simply biased key distribution.

On the topology constructed based on the keys generated
by the above method, every node issued 100 search queries
whose target keys are the keys of randomly sampled nodes.
We plotted the average and the maximum of all routing path
lengths for these queries in Fig. 14 and Fig. 15, respectively.
searchDSGOp(mid : power) and searchDROp(mid : power)
represent routing that involves the use of midpower as a
center estimation of keys. Moreover, we plotted the path length
distribution where the number of participating nodes is 10000
in Fig. 16.

As a result in Fig. 14, the average path lengths were
almost the same in searchDSGOp(mid : uniform) and
searchDSGOp(mid : power), and we discovered that using
miduniform as a detour criterion is effective even if the key
distribution is biased. Table II lists the average path lengths
where the number of nodes n is 100, 1000, and 10000. The
numerical values also indicate that the average path lengths
of the routing following searchDSGOp(mid : uniform) and
searchDSGOp(mid : power) are almost the same. In both
routing, the average path length of searchOp was shortened
by about 30%. In addition, the result shows that Detouring
Skip Graph takes advantage of detour routes to shorten the
path lengths even in this experiments since searchNLIOp

shortens the average path lengths by about 32%. Similar trends
are shown in Fig. 15 and Fig. 16. The proposed method also
provides more stable performance for any queries compared to
Skip Graph since the standard deviations of the path lengths
of searchOp and searchDSGOp(mid : uniform) are 4.54 and
2.76 in Fig. 16, respectively.

In addition, we conducted the same experiment on the
condition that the target keys ktarget ∈ {0, 1, . . . , 230 − 1} are
generated by uniform distribution for comparison purposes. In
this evaluation, all of them are non-existent keys.
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Fig. 14. Average path lengths on a topology whose keys were generated by
power-law distribution. The target keys are the keys of randomly sampled
nodes.
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Fig. 15. Maximum path lengths on a topology whose keys were generated
by power-law distribution. The target keys are the keys of randomly sampled
nodes.
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Fig. 16. Path length distribution on a topology whose keys were generated
by power-law distribution where n = 10000. The target keys are the keys of
randomly sampled nodes.

Fig. 17, Fig. 18, and Fig. 19 show the eval-
uation result. searchDSGOp(mid : uniform) and
searchDSGOp(mid : uniform) of Detouring Skip Graph
shortens the average path lengths by about 21% compared to
searchOp of Skip Graph, and searchNLIOp shortens them
by about 22% compared to searchOp. The shortening rate by
the proposed method is smaller than that in the experiment
with existent keys. We consider that it is because the target
keys are biased relative to the key distribution of the nodes,
thus a few detour routes were used.
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Fig. 17. Average path lengths on a topology whose keys were generated by
power-law distribution. The target keys are generated by uniform distribution.
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Fig. 18. Maximum path lengths on a topology whose keys were generated by
power-law distribution. The target keys are generated by uniform distribution.
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Fig. 19. Path length distribution on a topology whose keys were generated
by power-law distribution where n = 10000. The target keys are generated
by uniform distribution.

C. Random English Titles on Wikipedia

We used 10000 random English titles obtained on Apr.
15, 2020 from an API2 published by Wikipedia as keys.
Specifically, we encoded each title as a character string in
UTF-8, and we used the strings as 256(= 28)-based integer
keys. The purpose of using random titles is to evaluate the
effectiveness of the proposed method in realistic situations.

On the topology constructed based on the keys obtained
by the above method, every node issued 100 search queries
whose target keys are the keys of randomly sampled nodes.

2https://www.mediawiki.org/wiki/API:Main page (accessed Apr. 15, 2020)

We plotted the average and the maximum of all routing path
lengths for these queries in Fig. 20 and Fig. 21, respectively.
Moreover, we plotted the path length distribution where the
number of participating nodes is 10000 in Fig. 22.

As a result, searchDSGOp(mid : uniform) of Detouring
Skip Graph shortens the average path lengths by about 26%
compared to searchOp of Skip Graph, and searchNLIOp

shortens them by about 31% compared to searchOp. The
effectiveness of searchDSGOp(mid : uniform) is smaller than
that of searchNLIOp because the detour criterion miduniform

is not a center estimation for this key distribution. How-
ever, the result shows that the proposed method has a large
effect on shortening the path lengths despite the mismatch
detour criterion. Similar trends are shown in Fig. 21 and
Fig. 22. The proposed method also provides more stable
performance for any queries compared to Skip Graph since
the standard deviations of the path lengths of searchOp and
searchDSGOp(mid : uniform) are 4.62 and 3.08 in Fig. 22,
respectively.

D. Hashed Random English Titles on Wikipedia

Since Skip Graph is can be used as a DHT by hashing keys
for load balancing, it is important to evaluate the effectiveness
of the proposed method in such cases. In reality, the hash value
of some properties of each node, e.g., the hashed IP address.
In this scenario, we used the hash values of the titles of IV-C
as keys using SHA3-512 hash function.

This experimental settings the same as IV-C except that
the keys is hashed. Fig. 23, Fig. 24, and Fig. 25 show the
evaluation result.

As a result, searchDSGOp(mid : uniform) of Detouring
Skip Graph shortens the average path lengths by about 29%
compared to searchOp of Skip Graph, and searchNLIOp

shortens them by about 32% compared to searchOp. The
proposed method also provides more stable performance
for any queries compared to Skip Graph since the stan-
dard deviations of the path lengths of searchOp and
searchDSGOp(mid : uniform) are 4.44 and 2.78 in Fig. 25,
respectively.

Although the effectiveness is slightly less than that of IV-A,
the result is similar. We consider that this is because the hash
function brings the key distribution closer to uniform distribu-
tion and makes the detour criterion miduniform appropriate.
The result confirmed a sufficient effect for this experimental
scale although the bias of the distribution is a concern with
a small number of nodes. In addition, an important finding is
that the proposed method is more effective with hashing than
without it.

V. CONCLUSION

In this paper, we proposed Detouring Skip Graph, which
shortens the path lengths by using effectively the topology
that Skip Graph constructs. It introduces two techniques in the
routing algorithm of Skip Graph: each node 1) utilizes detour
routes and 2) traverses the adjacent nodes from the maximum
level. The simple extension enables to apply the proposed
method to existing Skip Graph. In addition, we proved the

https://www.mediawiki.org/wiki/API:Main_page
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Fig. 20. Average path lengths on a topology whose keys are random English
titles on Wikipedia.
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Fig. 21. Maximum path lengths on a topology whose keys are random Endlish
titles on Wikipedia.
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Fig. 22. Path length distribution on a topology whose keys are random English
titles on Wikipedia where n = 10000.

reachability and correctness for any search query and that the
routing path length is expected O(log n).

Detouring Skip Graph does not require construction of extra
links and modification of its topology; thereby, it maintains
the good properties of Skip Graph without additional costs.
Through the evaluation experiments, we confirmed the large
effect on shortening the path lengths, and especially the aver-
age path lengths were shortened by approximately 20%-30%
in comparison with Skip Graph. Further, it was experimentally
found that miduniform, the average of the keys belonging to two
nodes, is effective as a detour criterion even for biased or
realistic key distribution.
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Fig. 23. Average path lengths on a topology whose keys are random English
titles on Wikipedia.
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Fig. 24. Maximum path lengths on a topology whose keys are random Endlish
titles on Wikipedia.
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Fig. 25. Path length distribution on a topology whose keys are random English
titles on Wikipedia where n = 10000.

APPENDIX

In this appendix, we give Algorithm 4, which is a pseu-
docode of routing algorithm for search queries of Skip Graph.
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