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An Efficient Routing Method for Range Queries in Skip Graph
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SUMMARY Skip Graph is a promising distributed data structure for
large scale systems and known for its capability of range queries. Although
several methods of routing range queries in Skip Graph have been pro-
posed, they have inefficiencies such as a long path length or a large num-
ber of messages. In this paper, we propose a novel routing method for
range queries named Split-Forward Broadcasting (SFB). SFB introduces
a divide-and-conquer approach, enabling nodes to make full use of their
routing tables to forward a range query. It brings about a shorter average
path length than existing methods, as well as a smaller number of messages
by avoiding duplicate transmission. We clarify the characteristics and ef-
fectiveness of SFB through both analytical and experimental comparisons.
The results show that SFB can reduce the average path length roughly 30%
or more compared with a state-of-the-art method.
key words: Skip Graph, overlay networks, peer-to-peer networks, routing
algorithms, distributed algorithms

1. Introduction

Structured overlay networks are popular techniques to pro-
vide superior scalability and robustness for large scale dis-
tributed systems, such as video streaming [1], pub/sub mes-
saging [2], Blockchain [3], and IoT [4].

Skip Graph [5] is one of the structured overlay net-
works, whose remarkable feature is the capability of range
queries. Different from the well-known DHTs [6]–[8], Skip
Graph does not hash keys so that the order of them is pre-
served. This enables a node in Skip Graph to issue a query
with specifying a range, and to find nodes having keys
within it.

Although there are some existing methods of routing
range queries [9], [10], they have inefficiencies such as in-
volving a large number of messages by duplicate transmis-
sion or a high latency by a long path length.

In this paper, we propose a novel routing method for
range queries in Skip Graph, named Split-Forward Broad-
casting (SFB). SFB utilizes a divide-and-conquer approach
as like a state-of-the-art method [10], but has a different di-
viding policy. In SFB, each node which receives a range
query divides the target range into subranges by keys of its
neighbor nodes, and delegates the subranges to them. By us-
ing SFB, a shorter average path length than existing methods
can be achieved, as well as avoiding duplicate transmission.

In addition, we provide pragmatic knowledge of tun-
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ing the parameters in Skip Graph, e.g., the size of the al-
phabet for membership vectors. Since such parameters are
considered to affect the efficiency of routing range queries,
we make their influence clear by simulation experiments.

The contributions of this paper are threefold:

• First, we present a novel routing method for range
queries in Skip Graph.

• Second, we clarify the superiority of the proposed
method through both analytical and experimental com-
parisons with existing methods.

• Third, by simulation experiments, we clarify the influ-
ence of the parameters in Skip Graph on the efficiency
of routing range queries.

This paper is an extended version of [11], which re-
ported basic idea and restrictive analytical discussion. The
differences include a detailed algorithm with a pseudo code
(Sect. 3), a proof of equivalence between the delivery tree in
SFB and a binomial tree (Sect. 4), and evaluation by simula-
tion experiments (Sect. 5). Furthermore, this paper clarifies
the influence of parameters in Skip Graph on routing range
queries (Sect. 5.2).

The rest of this paper is organized as follows: Sect. 2
introduces related studies of handling range queries in Skip
Graph. Section 3 explains the proposed method, while the
analytical comparison with existing methods is described in
Sect. 4. Section 5 presents experimental evaluation, includ-
ing the discussion on the influence of the parameters in Skip
Graph. Finally, we conclude this paper in Sect. 6.

2. Related Work

Skip Graph [5] is a kind of structured overlay networks, pro-
viding the capability of range queries. Each node has a key
and a random sequence called a membership vector, which
consists of symbols contained in a finite alphabet Σ. A node
can issue a query with specifying a target range or a value in
the key space. The query is delivered to nodes whose keys
are included in the range or exactly matched with the value.

Skip Graph composes a multiplex structure of a skip
list [12]. Figure 1 shows an example of Skip Graph with
Σ = {0, 1}. Level 0 is a doubly linked list that consists of
all nodes sorted in the order of keys. In level i, each node
composes a doubly linked list with nodes whose member-
ship vectors have the same first i digits.

When a node issues an exact-match query, the search
process starts from the highest level of the node. The query

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Example of Skip Graph.

is forwarded among nodes in the same manner as a skip list,
i.e., it skips long distance at the higher level and gradually
moves down to level 0. The path length of forwarding the
query is O(log N) in Skip Graph of N nodes, while the size
of the routing table on each node is also O(log N).

2.1 Routing Range Queries in Skip Graph

In Skip Graph, a range query is first delivered to one of the
nodes within the target range by the previously described
way of exact-match queries. Subsequently, the query is
spread from the one to other nodes within the range. There
are several existing methods of spreading queries. Beltran
et al. [9] discussed the following methods with respect to
the number of messages and the path length.

• Sequential traversing
A query is forwarded along the doubly linked list at
level 0, until the upper or lower bound of the range is
found.

• Broadcasting without memory
Each node received a query forwards it to all its neigh-
bors within the range. Each node also keeps track of
the query already received to discard duplicate query.

• Broadcasting with memory
It is a variation of the above broadcasting method.
When each node forwards the query, it includes a list of
nodes, which have already received the query, into the
message. This reduces the number of messages partly
by avoiding some of duplicate transmission.

Note that another method called Tree-based in [9] is out of
the scope of this paper. This is because it uses additional
links, being particular to Skip Tree Graph [13] and requir-
ing a commensurate maintenance cost; we are focusing on
handling range queries in a normal topology of Skip Graph
for versatility.

The sequential traversing method can deliver a range
query to all corresponding nodes with the minimum num-
ber of messages, without any duplicate transmission. How-
ever, it requires long path lengths, especially when the num-
ber of nodes within the range is large. Contrary, broadcast-
style methods outperform the sequential traversing method
in terms of the path length, but they involve a large number
of messages by duplicate transmission. Even in the broad-
casting with memory method, the experimental results in [9]
show that the number of messages is quite larger than in the

Algorithm 1: Routing process in MRF.
1 uponReceiving(range, query)
2 leftDelegationNode← NULL;
3 rightDelegationNode← NULL;
4 leftMaxLevel← −1;
5 rightMaxLevel← −1;
6 foreach neighbor ∈ routingTable do
7 if neighbor.key is within range then
8 if neighbor.key < key and neighbor.level >

leftMaxLevel then
9 leftMaxLevel← neighbor.level;

10 leftDelegationNode← neighbor;

11 if neighbor.key > key and neighbor.level >
rightMaxLevel then

12 rightMaxLevel← neighbor.level;
13 rightDelegationNode← neighbor;

14 if leftDelegationNode � NULL then
15 leftSubRange← clone of range;
16 leftSubRange.setRightOpenBound(key);
17 Send leftSubRange and query to leftDelegationNode;

18 if rightDelegationNode � NULL then
19 rightSubRange← clone of range;
20 rightSubRange.setLeftOpenBound(key);
21 Send rightSubRange and query to

rightDelegationNode;

sequential traversing method; it cannot eliminate duplicate
transmission completely. That is, there is a difficulty of sup-
pressing both the path length and the number of messages
by using these methods.

There exists another state-of-the-art method, called
Multi-Range Forwarding (MRF) [10], which can improve
the above difficulty to some extent. MRF introduces a
divide-and-conquer approach. A query with its target range
R is forwarded as follows: when a node whose key is within
R receives the query, the node divides R into subranges by
its key. Then the node chooses a neighbor node for each
subrange, which is the neighbor of the highest level among
neighbors within the subrange. Subsequently, the query at-
tached with the subrange instead of R is forwarded to the
neighbor node. By recursively forwarding the query in the
same manner, it is eventually delivered to all nodes having
keys within R.

The pseudo-code of MRF is shown in Algorithm 1.
The function uponReceiving is called when a node re-
ceives a query with a target range containing its key. At
first, the node tries to extract neighbor nodes to which sub-
ranges are delegated for each of the left side and the right
side. (lines 2-13). If a corresponding node exists, the
query is forwarded with a subrange to it (lines 14-21). In
the pseudo-code, The functions setRightOpenBound and
setLeftOpenBound change the bound of a range to the
value specified in the argument as an open bound, i.e., the
bound does not include the endpoint.

Figure 2 shows an example of routing with the use of
MRF. The blue rounded rectangles indicate the target range
and its subranges. When node A receives a query with its tar-
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Fig. 2 Example of routing with MRF.

get range R = [8, 50] for instance, the range is divided by the
key 10 into two subranges: [8, 10) and (10, 50]. Among the
neighbors of node A within (10, 50], node E is the neighbor
of the highest level. Therefore, node A forwards the query
with the subrange (10, 50] to node E. Subsequently, node E
forwards the query to node C and node G in the same man-
ner, with the subrange (10, 36) and the subrange (36, 50] re-
spectively. Node C also forwards it to node B and node D,
while node G forwards to node F and node H.

MRF can avoid duplicate transmission, i.e., each node
within the target range receives the query only once. In ad-
dition, it achieves shorter path lengths than the sequential
traversing method, owing to that each node forwards the
query to not one but at most two neighbor nodes.

Although MRF outperforms other existing methods in
terms of both the path length and the number of messages,
the former still tends to be long. For example, the path
length from node A to node B in Fig. 2 is 3, despite node
B has a direct link with node A at level 0. Such inefficiency
is caused by the structure of the delivery tree. As shown
in the figure, MRF forms a delivery tree similar to a binary
tree, so that almost half of nodes receive the query at the
leaves of the tree with the maximum path length.

We describe analytical comparison of these existing
methods in detail, later in Sect. 4.

3. Split-Forward Broadcasting

We propose a novel routing method for range queries named
Split-Forward Broadcasting (SFB), which can reduce the
average path length of MRF.

SFB utilizes a divide-and-conquer approach as like
MRF, but has a different dividing policy. In SFB, each node
which receives a range query divides the target range into
subranges by keys of its neighbor nodes, whereas in MRF
the range is divided by the key of itself. Namely, a query
with its target range R is forwarded as follows: when a node
whose key is within R receives the query, the node first di-
vides R into two subranges by its key, i.e., the left side and
the right side. After that, the node proceeds a same process
for each of them. It divides the subrange into smaller sub-
ranges by using the keys of all its neighbor nodes placed
within the subrange. Then the node forwards the query to
each of them with the corresponding subrange, instead of R.
By recursively forwarding the query in the same manner, the

Algorithm 2: Routing process in SFB.
1 uponReceivingAtStart(range, query)
2 leftSubRange← clone of range;
3 leftSubRange.setRightClosedBound(key);
4 rightSubRange← clone of range;
5 rightSubRange.setLeftClosedBound(key);
6 uponReceiving(leftSubRange, query, FALSE);
7 uponReceiving(rightSubRange, query, TRUE);

8 uponReceiving(range, query, isRightSide)
9 delegationNode← NULL;

10 neighbors← NULL;
11 if isRightSide = TRUE then
12 neighbors← routingTable.getRightNeighbors();
13 else
14 neighbors← routingTable.getLeftNeighbors();

15 maxLevel← −1;
16 foreach neighbor ∈ neighbors do
17 if neighbor.key is within range and neighbor.level >

maxLevel then
18 maxLevel← neighbor.level;
19 delegationNode← neighbor;

20 if delegationNode � NULL then
21 subRange← clone of range;
22 if isRightSide = TRUE then
23 subRange.setLeftClosedBound(delegationNode.key);

24 range.setRightOpenBound(delegationNode.key);
25 else
26 subRange.setRightClosedBound(delegationNode.key);

27 range.setLeftOpenBound(delegationNode.key);

28 Send subRange, query and isRightSide to
delegationNode;

29 uponReceiving(range, query, isRightSide);

query is eventually delivered to all nodes which have keys
within R.

The pseudo-code of SFB is shown in Algorithm 2.
The function uponReceivingAtStart is called only when a
range query is received by the first node in the target range.
When the secondary or succeeding nodes within the range
receive the query, uponReceiving is called instead of upon-
ReceivingAtStart.

In uponReceivingAtStart, at first, the node divides
the range into two subranges by its key (lines 2-5). Sub-
sequently, the node calls the function uponReceiving for
each of the left side and the right side (lines 6-7). In up-
onReceiving, the node tries to extract a delegation node,
which is a neighbor on the specified side and connected at
the highest level among neighbors within the range (lines 9-
19). If a corresponding node exists, the node divides the
range into two subranges by the key of the delegation node.
The one farther from the key of the node is attached to
the query, and then it is forwarded to the delegation node.
Another subrange, which contains the key of the node, is
used in the recursive calling of uponReceiving (line 29). In
the pseudo-code, the functions setRightClosedBound and
setLeftClosedBound change the bound of a range to the
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Fig. 3 Example of routing with SFB.

value in the argument as a closed bound, i.e., the bound in-
cludes the endpoint.

Figure 3 shows an example of routing with the use of
SFB. Same as Fig. 2, The blue rounded rectangles indicate
the target range and its subranges. When node A receives
a query with its target range R = [8, 50], the range is di-
vided into two subranges: [8, 10] and [10, 50]. Among the
neighbors of node A within [10, 50], node E is the neighbor
of the highest level. Therefore, node A divides [10, 50] into
[10, 36) and [36, 50] by the key of node E, then forwards the
query with the subrange [36, 50] to node E. Subsequently,
node A performs the same process for the remaining sub-
range [10, 36) at lower levels recursively. That is, node A
forwards the query with the subrange [27, 36) to node C,
and then forwards the query with the subrange [13, 27) to
node B. Each node which receives the query from node A
forwards the query to its neighbors in the same manner, so
that the query is eventually delivered to all nodes having
keys within the target range.

SFB enables nodes to make full use of their routing
tables to forward a range query, unlike MRF. For example,
node A in Fig. 3 forwards the query to three neighbor nodes,
whereas in MRF each node forwards to only at most two
neighbors. Therefore, SFB achieves a shorter average path
length than MRF as well as avoiding duplicate transmission.

4. Analytical Comparison

We give analytical comparison of SFB with the methods de-
scribed in Sect. 2, from the viewpoints of the path length and
the number of messages required inside target ranges.

Table 1 shows the summary of differences, where NR

denotes the number of nodes within a target range. For ex-
ample, in the case of Fig. 2 and 3, NR is equal to 8.

Regarding the sequential traversing method, a query is
forwarded along the level 0 list. In the case of Fig. 2 and 3,
the query issued by node A is forwarded in the order of B,
C, D, E, F, G, H. Accordingly, both the path length and the
number of messages are 7. That is, the path length and the
number of messages in the sequential traversing method are
linear with respect to NR.

On the other hand, both broadcasting methods require
only a logarithmic path length. This relies on the nature
of the topology of Skip Graph, since broadcasting meth-
ods basically achieve the shortest path length. Note that we

Table 1 Comparison of routing methods.

Path length # of messages
Sequential traversing O(NR) O(NR)

Broadcasting
with/without memory

O(log NR) O(NR log NR)

MRF O(log NR) O(NR)
SFB O(log NR) O(NR)

Fig. 4 Difference of tree structures.

are focusing on the generic characteristics, even though the
path length is affected by the communication latency among
nodes. In regard to the number of messages, these methods
require O(NR log NR) messages. This is because each of NR

nodes has O(log NR) neighbors inside the target range and
they forward a query to all their neighbors within the target
range except for the sender node.

As for MRF and SFB, a query is forwarded by gradu-
ally moving down to lower levels. Namely, the path length
becomes linear with respect to the highest level where the
start node has a neighbor within the target range. Since
the highest level is logarithmic of NR, the path length is
O(log NR). In addition, they require only O(NR) messages,
because each node within the target range receives the same
query only once. Consequently, they have advantages of
both the sequential traversing method and the broadcasting
methods.

4.1 Difference in Tree Structures

Although MRF and SFB have basically the same tendencies
in regard to the path length and the number of messages,
there is an inefficiency that the actual path length in MRF
tends to be long as previously mentioned in Sect. 2. We
discuss the difference about the actual path length from the
viewpoint of the structure of delivery trees.

Figure 4 shows the difference of tree structures in the
case of the examples in Fig. 2 and Fig. 3. Note that these
examples are using a balanced Skip Graph topology to sim-
plify, i.e., every link in level i skips exactly |Σ|i −1 nodes. In
the examples, the size of the alphabet for membership vec-
tors is |Σ| = 2. The principle difference between SFB and
MRF is that SFB enables each node to forward the query to
all possible neighbors, whereas in MRF each node forwards
to at most two neighbors. As a result, SFB composes a tree
as shown in the left side of Fig. 4, while MRF composes a
binary tree-like structure as shown in the right side.

The tree structure of SFB is known as a binomial tree,
which is used in a binomial heap [14]. Binomial trees are
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Fig. 5 Recursive structure of binomial trees.

defined recursively as shown in Fig. 5. A binomial tree of
order 0, denoted as B0, is a single node. A binomial tree of
order p, denoted as Bp, has a root node whose children are
roots of Bp−1, Bp−2, · · · , B0.

In the following discussion in this section, we use the
assumptions below to prove and analyze the characteristics
of SFB and MRF:

• |Σ| = 2.
• A completely balanced topology is composed.
• The number of nodes within a target range is 2r.
• A range query is first received by the leftmost node in

its target range.

We also use the following notations: ni denotes the ith node
from the leftmost node within the target range, K(ni) denotes
the key of ni, and Lj denotes level j in Skip Graph.

The target range can be denoted as [K(n0),K(n2r )) for
whatever the original range is, because the leftmost node
and the rightmost node are n0 and n2r−1 respectively. Here,
we have the following lemmas:

Lemma 1. The node which has a link with n0 at the highest
level within the range is n2(r−1) , where the level is Lr−1.

Proof. n0 has a link with n2i at Li, clearly from the assump-
tions of the completely balanced topology and |Σ| = 2. Since
the rightmost node within the range is n2r−1, the highest
level Lj at which n0 has a link within the range satisfies
2 j ≤ 2r − 1. Consequently, the largest j satisfying the con-
dition is r − 1. �

Lemma 2. In using SFB, n0 forwards the query to n2i at Li,
for each i from r−1 to 0. The subrange attached to the query
becomes [K(n2i ),K(n2(i+1) )).

Proof. From Lemma 1, n0 first forwards the query to n2(r−1) .
After that, the remaining subrange is [K(n0),K(n2(r−1) )). The
number of nodes contained in this subrange is 2r−1. There-
fore, we can apply Lemma 1 recursively by replacing r to
r − 1. This means that n0 forwards the query to n2i for each
i from r − 1 to 0. Here, the subrange forwarded from n0

to n2(r−1) is obviously [K(n2(r−1) ),K(n2r )), while the subrange
forwarded from n0 to n2(r−2) is [K(n2(r−2) ),K(n2(r−1) )). Conse-
quently, by also considering recursively, the subrange for
each i becomes [K(n2i ),K(n2(i+1) )). �

Fig. 6 Comparison of number of nodes at each depth.

From these lemmas, now we have the following theo-
rem:

Theorem 1. SFB forms a binomial tree in a balanced Skip
Graph topology where |Σ| = 2.

Proof. In Lemma 2, n2i is placed at the leftmost of the sub-
range which it receives. In addition, the subrange contains 2i

nodes. Hence, we can apply Lemma 2 recursively by replac-
ing 2r to 2i with considering n2i as new n0. Namely, when a
range contains 2 j nodes, the delivery tree starting from the
leftmost node of the range has always the same structure
for same j. Let T j denote this tree structure. Here, clearly
from Lemma 2, the child nodes of the root node of Tr are
the root nodes of Tr−1,Tr−2, · · · ,T0. Since T0 is equivalent
to a single node, the tree composed by SFB coincides with
a binomial tree. �

A binomial tree has a feature of that the number of
nodes at each depth of the tree is the same as binomial coef-
ficient; there are

(
p
d

)
nodes at the depth d in Bp [14]. On the

other hand, the number in MRF is exponentiation of 2 due
to its binary tree structure.

When we assume the number of nodes within the target
range is 213 = 8,192, the difference of the number of nodes
at each depth between SFB and MRF becomes as shown in
Fig. 6. Regarding MRF, the number of nodes at the deepest
depth 13 is the largest. Unlike this, the tree of SFB has the
largest number of nodes at the depth 6 and 7. In other words,
more nodes have shorter path lengths in SFB than in MRF.
This difference makes the superiority of SFB regarding the
average path length.

4.2 Average Path Length

By considering the feature of binomial trees, the tree of SFB
has

(
log NR

d

)
nodes at the depth d (d = 0, 1, . . . , log NR). Since

the depth is equivalent to the path length from the root node
to the corresponding node, we can calculate the average path
length of SFB, LS FB, as follows:

LS FB =
1

NR

log NR∑
d=0

{(
log NR

d

)
· d

}
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=
1

NR

log NR∑
d=1

{(
log NR

d

)
· d

}

=
1

NR

log NR∑
d=1

{
log NR

d
·
(
log NR − 1

d − 1

)
· d

}

=
log NR

NR

log NR∑
d=1

(
log NR − 1

d − 1

)

=
log NR

NR

log NR−1∑
d−1=0

(
log NR − 1

d − 1

)

=
log NR

NR
· 2log NR−1

=
log NR

2

For the tree of MRF, it has 2d−1 nodes at the depth d
(d = 1, 2, . . . , log NR). Therefore, the average path length
LMRF can be calculated as follows:

LMRF =
1

NR

log NR−1∑
d=0

{
(d + 1) · 2d

}

Let m and S denote:

m = log NR

S =
m−1∑
d=0

{
(d + 1) · 2d

}

Here, we can find

S = 1 · 20 + 2 · 21 + · · · + m · 2m−1

2S = 1 · 21 + 2 · 22 + · · · + m · 2m

Therefore,

S = 2S − S

= m · 2m − (20 + 21 + · · · + 2m−1)

= m · 2m − (2m − 1)

= (m − 1) · 2m + 1

= (log NR − 1) · NR + 1

∴ LMRF =
S
NR

= log NR − 1 +
1

NR

Figure 7 illustrates values of LS FB and LMRF , where the
horizontal axis represents NR. From these, we can say that
the average path length in SFB is approximately half of that
in MRF. Reducing the average path length is quite effective
for improving the latency performance. Even though some
of the nodes have a larger number of child nodes in SFB
than in MRF, the former is considered to be superior be-
cause communication delay is generally much more domi-
nant than processing delay. Note that the maximum number

Fig. 7 Comparison of average path length in balanced Skip Graph.

of child nodes in SFB is not so large, since it is bounded by
O(log NR). Furthermore, the shorter average path length also
brings about a higher fault-tolerance, by reducing the proba-
bility of being affected by the failure of nodes. For example,
the average number of descendant nodes of each node on the
trees in Fig. 4 are 1.5 for SFB and 2.125 for MRF. By such a
smaller number of descendant nodes in SFB, it is expected
to lead the smaller influence by nodes’ failure.

As described above, the discussion in this section as-
sumes the completely balanced topology of Skip Graph.
Therefore, it shows somewhat different results from the ex-
periments with randomly generated membership vectors, al-
though assuming the balanced topology is helpful for under-
standing the characteristics analytically. The difference and
its meanings are discussed in Sect. 5.

5. Evaluation

We evaluate SFB through experiments with a simulation
program implemented in Java (Java SE Development Kit 8).
The simulator is operated on a machine with a quad-core
CPU (Intel Core i7-8650U 1.90GHz), 16GB memory, and
Windows 10 operating system.

In this evaluation, our simulator generates 10,000
nodes to compose Skip Graph with |Σ| = 2†. Subsequently,
it measures the average path length for SFB and MRF re-
spectively, while changing the number of nodes within the
target range (NR). Each measurement is conducted with the
following steps:

1. A range query is issued by the leftmost node in its
range††.
†We use |Σ| = 2 which is the most commonly used value when

discussing and implementing Skip Graph. For example, [5] dis-
cusses some sections with an assumption of |Σ| = 2.
††Starting from the leftmost node within the range is one of the

choices in actual use. In Skip Graph, routing toward the ends of
a range is capable, whereas that toward a specific position within
the range such as the 100th node from the leftmost node is difficult.
Therefore, practical choices for the position of the start node within
the range are the leftmost node, the rightmost node, and any node
which receives the query firstly within the range. Since the node
which receives the query firstly within the range is not always the
same in actual use except for the case using the endmost nodes, we
use the leftmost node as the fixable start position within the range.



522
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

Fig. 8 Average path length of SFB and MRF.

2. The query is forwarded by using SFB or MRF, with
keeping track of the path length from the start node to
each node within the target range.

3. After completion of delivering, the simulator calculates
the average path length.

4. The above steps are repeatedly conducted five times,
and finally calculates the average of the five times.

Note that we fixed the number of nodes, 10,000, through ex-
periments in this section because it does not affect the result.
This can be said from the discussion of analytical compari-
son in Sect. 4; the path length of both SFB and MRF depend
on NR but not the number of whole nodes.

Figure 8 shows the result. Although SFB and MRF
have basically the same tendencies in response to NR, SFB
achieves shorter average path lengths. In the figure, SFB
reduces the average path lengths of MRF by 26.0% (NR =

10), 35.23% (NR = 100), 33.19% (NR = 1,000), and 35.96%
(NR = 10,000) respectively.

Different from using the balanced topology discussed
in Sect. 4.2, the reduction rate by using SFB does not come
up to around 50%. From Fig. 7 and 8, average path lengths
for both SFB and MRF in the experiment are longer than
those derived from the analytical comparison. Thereby, the
reduction rate by using SFB becomes lower than 50%. This
difference between the experimental results and the analyt-
ical discussion is because the topology in the experiment is
not completely balanced due to randomly generated mem-
bership vectors.

The fact that actual performance becomes lower than
the theoretical value is representing one of the shortcom-
ings of randomized algorithms like Skip Graph. Namely, the
performance of such randomized algorithms is affected by
the deviation of random numbers. To overcome this defect,
methods to avoid or improve the influence of random num-
ber generation exist: Deterministic SkipNet [15] is a method
for constructing a scalable overlay network which is sim-
ilar to Skip Graph but is not relying on randomized num-
bers. We can avoid the influence of random number gen-
eration by using this deterministic algorithm. Self-Refining
Skip Graph [16] is another approach. It aims at refining the
topology of Skip Graph dynamically towards the completely
balanced one. By using Self-Refining Skip Graph, we can
obtain the performance nearly the theoretical value since the

topology becomes approximately balanced after a sufficient
period of time to refine. Note that these methods take more
maintenance cost, e.g., the number of messages required for
nodes’ joining/leaving or for refining the topology, than Skip
Graph.

From these, we can say that the analytical discussion
in Sect. 4 indicates the performance in an ideal topology
of Skip Graph and we can obtain it by using some meth-
ods [15], [16] in exchange for more maintenance cost. On
the other, experimental results in this section indicate the
performance when we use Skip Graph as it is.

5.1 Discussion on Latency

As described in Sect. 4, reducing the average path length is
effective for better latency. Primary factors of latency for
delivering a range query are processing delay in each inter-
mediate node on the path and communication delay between
nodes. Reducing the average path length leads to suppress-
ing the latter which is more dominant in general.

Reducing the average path length is particularly effec-
tive in the case of that nodes are scattered over a wide area
rather than placed inside a local area network such as a data
center. For example, some existing studies [2], [17] using
range queries of Skip Graph assume that a large number of
nodes are placed over a wide area, at the network edge, and
provide the functionality of publish/subscribe messaging for
IoT devices. In such cases, the communication delay be-
tween nodes tends to be quite large. Indeed, according to
the Global Ping Statistics provided by WonderNetwork [18],
round trip times (RTTs) among cities in the world reach as
large as hundreds of milliseconds. Even inside one coun-
try, for example with Japan, RTTs among different cities are
around 10 milliseconds or more. If we assume that com-
munication delays between nodes are uniformly 10 or 100
milliseconds and the influence of processing delay is negli-
gible, the differences in the average latencies between SFB
and MRF become approximately 62.7 or 627 milliseconds
respectively in the case of NR = 10,000 in the experiment.
This is based on the RTTs with PING and the differences
could grow larger according to the size of each query in
practice. Such differences are expected to improve the user
experience (UX) in applications of Skip Graph†.

Note that the above discussion is for the average path
lengths, not for the maximum path lengths. The maximum
path lengths, i.e., the maximum depth of delivery trees, are
basically the same between SFB and MRF. Although the
maximum path length is also important in consideration of
latency, it is out of the scope of this paper and one of our
future works. We will consider some approaches such as in-
troducing the priority of receivers; managing receiver nodes
so that they are placed at shallower depth on the delivery
tree according to the requirement for the latency.

†It is said that even a relatively small delay, e.g., 10 to 100
milliseconds, highly affects UX [19], [20].
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Fig. 9 Influence of alphabet size on average path length.

5.2 Influence of Parameters in Skip Graph

As mentioned in Sect. 1, parameters in Skip Graph could
affect the efficiency of routing range queries. In this section,
we focus on the size of the alphabet for membership vectors
and the position of the start node within the target range.

5.2.1 Size of Alphabet for Membership Vectors

We confirm the influence of |Σ|. In this experiment, our sim-
ulator generates 10,000 nodes to compose Skip Graph, and
measures both the average path length and the average size
of routing tables, while changing |Σ|. We measure two kinds
of the size of routing tables: including duplicate entries, and
excluding duplicate entries. The former is simply counting
entries in routing tables, whereas the latter is counting differ-
ent entries as 1 if they are a same node. NR is set to 10,000†,
and each measurement is conducted five times repeatedly.

Figure 9 and Fig. 10 shows the result. The average size
of routing tables seems to be smaller exponentially in re-
sponse to the increase of |Σ|. We can also see that more than
half of entries in routing tables are duplicate in the case of
|Σ| = 2. The duplication ratio becomes lower by increasing
|Σ|. This is because the larger the alphabet size becomes, the
lower the probability of that two nodes connected at a level
join the same list at a one higher level becomes.

On the other hand, the average path length is growing
almost linearly in response to the increase of |Σ|. The ten-
dencies of SFB and MRF seem to have no big difference.

From these, we can say that increasing |Σ| is effective
for reducing the size of routing tables especially when |Σ|
is relatively small. Increasing |Σ| also leads the increase of
the average path length, but the influence is limited. For

†Note that NR = 10,000 is a possible scale in actual use. For
example, video streaming is one of the applications of structured
overlay networks as described in Sect. 1. In such applications,
NR possibly corresponds to the number of concurrent viewers of
a video streaming channel which could be 10,000 or more. In-
deed, there is a record which has over 10 millions concurrent view-
ers [21].

Fig. 10 Influence of alphabet size on routing table size.

Fig. 11 Influence of position of start node.

example, when we use SFB and set |Σ| = 10, the average
path length is still shorter than that of using MRF with |Σ| =
2.

5.2.2 Position of Start Node

We also confirm the influence of the position of the start
node within the target range. As mentioned previously, a
range query is forwarded to one of the nodes within the
range by the way of routing exact-match queries. That is, we
have options about where routing inside the range is started
from; the leftmost node, the rightmost node, or any node
which receives the query firstly within the range. These
choices could affect the efficiency of routing range queries.

In this experiment, our simulator generates 10,000
nodes to compose Skip Graph with |Σ| = 2, and measures
the average path length. Measurement is conducted with
changing the start position between the 1st and the 10,000th,
counting from the leftmost node within the range. NR is set
to 10,000, and each measurement is conducted five times
repeatedly.

Figure 11 shows the result. In the case of starting from
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the leftmost node or the rightmost node, the average path
length tends to be longer than other positions. Although it
is considered that the start position nearer the center of the
range makes a shorter average path length, the difference
between start positions other than both ends of the range
seems to be small.

From the result, it is less efficient to choose the leftmost
node or the rightmost node as the start node, unless there is
any reason to process routing in one direction.

6. Conclusion

In this paper, we proposed SFB, which is a novel method for
routing range queries in Skip Graph. SFB achieves a shorter
path length and a smaller number of messages compared
with existing methods. From the result of the simulation
experiment, SFB can reduce the average path length roughly
30% or more than a state-of-the-art method MRF. As well
as improving the latency performance, this shorter average
path length is effective for obtaining a higher fault-tolerance
by lowering the probability that queries are caught in failure
of nodes.

We also discussed the influence of the parameters in
Skip Graph. We clarified that increasing the alphabet size
is effective for reducing the size of routing tables, though
it leads the increase of the average path length to a rather
small extent. As for the position of the start node, the result
of the experiment showed that starting from the ends makes
the average path length longer than other positions. These
knowledges are helpful for users to design and implement
Skip Graph-based systems.

Future work includes adaptive utilization of SFB and
the other routing methods. Besides, we plan to clarify the
applicability of SFB-style routing to other structured overlay
networks, which are capable of range queries.
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