
Skip Suffix Array: A Partial Match Retrieval Method
on Structured Overlay Networks

Ryohei Banno and Kazuyuki Shudo
Tokyo Institute of Technology, Tokyo, Japan

Email: banno@computer.org

Abstract—Structured overlay networks provide superior scala-
bility and robustness suitable for large scale distributed systems.
However, typical algorithms’ ability to handle complex queries is
limited; consequently, their range of applications is also limited.
We propose a partial match retrieval method for structured
overlay networks that we refer to as Skip Suffix Array (SSA).
SSA integrates the concept of suffix arrays with Skip Graph,
which is a distributed range-queriable data structure. In addition,
we introduce a unique routing method for delivering partial
match queries. SSA achieves lower communication cost and
better load balancing compared to some existing methods for
partial match retrieval, as well as its search time is suppressed to
O(logN) where N is the number of nodes. Experimental results
demonstrate that SSA can reduce the average path length and
the average number of messages by more than 85% compared
to existing methods, under experimental conditions with 10, 000
nodes and search words of length 8.

Index Terms—Overlay networks, partial match retrieval, peer-
to-peer networks, skip graph, suffix array

I. INTRODUCTION

Structured overlay networks, a type of peer-to-peer network,
are promising techniques to obtain scalability and robustness
in large scale distributed systems. Structured overlay networks
are attracting significant academic and industrial interest due
to their applicability to data storage [1], publish/subscribe
messaging [2] and Internet of Things (IoT) systems [3].

One of the challenges in structured overlay networks is
handling complex queries. We focus on partial match retrieval
which is required to realize flexible search in data storage
and IoT systems, flexible filtering in publish/subscribe mes-
saging, etc. Although typical algorithms for structured overlay
networks, such as Chord [4] and Pastry [5], cannot achieve
partial match retrieval, some existing methods can [6], [7].
However, these existing methods have some inefficiencies
including large communication costs and load imbalance.

In this paper, we propose Skip Suffix Array (SSA), a method
that enables partial match retrieval on structured overlay
networks. SSA integrates the concept of suffix arrays [8], a
data structure for string searches, with Skip Graph [9], a dis-
tributed range-queriable data structure. In addition, we extend
a state-of-the-art routing algorithm for Skip Graph to deliver
partial match queries to corresponding nodes efficiently. SSA
achieves lower communication costs and better load balancing

This work was supported in part by SECOM Science and Technology
Foundation, in part by New Energy and Industrial Technology Development
Organization (NEDO), and in part by JSPS KAKENHI Grant No.19K20253.

compared to existing methods. In addition, its search time is
suppressed to O(logN), where N is the number of nodes.

The primary contributions of this paper can be summarized
as follows.

• We show the basic design of the proposed SSA method
that integrates suffix arrays and Skip Graph.

• We present a routing method to deliver partial match
queries.

• We clarify the characteristics and effectiveness of SSA
by analytical and experimental comparisons with existing
methods.

Note that this paper is an extended version of our previ-
ous work [10], which reported the basic idea (in Japanese).
We extended the previous version by improving the routing
protocol to reduce the path length, and we redesigned and
reconducted experiments. Specifically, the differences include:
proposal of an improved routing method (Section III-D),
quantitative evaluation that includes a comparison with our
previous method and more existing methods (Section V).

The remainder of this paper is organized as follows. Sec-
tion II introduces related studies on partial match retrieval on
overlay networks. Section III explains the proposed method.
Analytical comparisons with existing methods are discussed
in Section IV. Section V presents experimental evaluation.
Conclusions and suggestions for future work are given in
Section VI.

II. RELATED WORK

Several existing methods attempt to provide partial match
retrieval on structured overlay networks.

Preliminary to discussing those methods, we define partial
match retrieval by assuming the following.

• Each node of an overlay network has one or more labels,
which are to search.

• A label is a sequence of characters, denoted a1a2...aL
where the length of the label is L.

• A set of substrings of a label lb is denoted Slb =
{aiai+1...aj | 1 ≤ i ≤ j ≤ L}.

Definition 1. Assuming S is a set of finite strings, partial
match retrieval is defined as follows: if a node issues a query
with a search word s ∈ S, the query is delivered to all nodes
which have a label lb such that s ∈ Slb.

a ba

ba ba$

ba$ $

$ $

Fig. 1. Example of suffix
tree

1

10

100

1000

10000

0 500 1000 1500 2000 2500

Fr
eq

ue
nc

y o
f 2

-g
ra

m

Rank

(a) 2-gram

1

10

100

1000

0 5000 10000 15000

Fr
eq

ue
nc

y o
f 3

-g
ra

m

Rank

(b) 3-gram

Fig. 2. Deviation of appearance frequencies of n-grams

0

2000

4000

6000

0 10 20 30 40 50 60 70

of

 h
as

ht
ag

s

Rank

Fig. 3. Imbalance of matching hashtags among
first characters

A. Existing methods

PIER [6], [11] is an approach to handle a partial match
query as a combination of multiple exact-match queries. In
a preprocess, each node divides its labels into n-grams. For
example, a label “computer” is divided into seven substrings
as 2-grams, i.e., “co”, “om”, “mp”, “pu”, “ut”, “te” and “er”.
Subsequently, the node stores its identifier, e.g., IP address
and/or the label, in a distributed hash table (DHT) [4], [5] with
a key of each divided n-gram. When a node issues a partial
match query, its search word is also divided into n-grams. For
each n-gram, the issuer node retrieves a set of node IDs from
the DHT using the n-gram as a key. Then, the node counts the
number of appearances of each node ID in the obtained sets.
If there are node IDs such that the number is the same as the
number of n-grams of the search word, they are considered as
nodes having matching labels. Finally, the issuer can deliver
the query to the corresponding nodes.

DST [7] constructs a suffix tree, a data structure capable of
partial match queries, over a DHT. Fig. 1 shows an example
of a suffix tree for the string “ababa”. Substrings are mapped
to each edge such that a sequence of substrings from a root
edge to a leaf edge represents a single suffix. The character “$”
indicates the end of the suffixes. In DST, each root edge of the
suffix tree is stored in the DHT with a key of the first character
of its corresponding substring. Stored data includes identifiers
of child edges. Edges besides root edges are also stored in the
DHT with keys of IDs given by their own parent edge. On each
leaf edge, IDs of nodes whose labels have the corresponding
suffix are stored. When a node issues a partial match query, it
first retrieves a root edge from the DHT by specifying the first
character of the search word as a key. Thereafter, by retrieving
the corresponding child edge on the DHT recursively, it can
obtain IDs of nodes holding matching labels if they exist.

B. Inefficient aspects of existing approaches

Both PIER and DST have inefficiencies from some perspec-
tives.

1) Load imbalance: One matter of concern is load imbal-
ance. Namely, they are heavily affected by deviations in the
appearance frequencies of keys.

In PIER, n-grams are used as keys in a DHT. Generally,
the appearance frequencies of n-grams are largely biased.
Fig. 2 (a) and Fig. 2 (b) show the deviation of the appear-
ance frequencies of n-grams, using 10, 000 English hashtags

obtained from Twitter1. Note that the average length of these
hashtags was 10.154, whereas the number of 2-grams and 3-
grams were 2, 442 and 14, 587 respectively. As can be seen,
only a few n-grams appear hundreds or thousands of times,
while most appear less than 10 times. Since all node IDs
corresponding to an n-gram are stored on a single node in
PIER, such deviation is directly reflected in the load of each
node.

Similarly, DST also involves load imbalance. There is a
limited number of root edges, and the appearance frequencies
of their first characters are biased. Fig. 3 shows the number of
corresponding hashtags for each initial character. Obviously, a
node responsible for a character of high rank tends to have a
heavier load because every query begins from one of the root
edges.

2) High communication costs: PIER performs a lookup in
a DHT for each n-gram of a search word. Thus, one partial
match query requires communication cost proportional to the
length of its search word. Likewise, DST also requires a large
number of messages due to its mechanism, i.e., a lookup in a
DHT occurs for each transition from a parent edge to its child
edge.

3) n-gram related issues: Since PIER utilizes n-grams,
there could be false positive results. For example, the search
word “sea” can match the label “ease”. Such cases cause
increased communication costs.

In addition, a search word must be equal to or longer than
n of n-grams.

III. SKIP SUFFIX ARRAY

The proposed SSA partial match retrieval method can
improve the inefficient aspects of the existing methods by
integrating suffix arrays with Skip Graph.

A. Suffix array

A suffix array [8] is a sorted array of all suffixes of a string.
For example, the suffix array of a string “computer” is shown
in Table I. When a suffix array is given, we can find the
position of an arbitrary substring efficiently by binary search
on the suffix array.

B. Skip Graph

Skip Graph [9] is one of the algorithms for structured over-
lay networks, known to handle range queries effectively. Each

1The hashtags are obtained by using Twitter API on February 14th, 2019.

TABLE I
EXAMPLE OF SUFFIX

ARRAY

Suffix Position
computer 0
er 6
mputer 2
omputer 1
puter 3
r 7
ter 5
uter 4

7 21 33 148 275 399Level 0

Level 1

Level 2

Level 3

7 33 148
21 275 399

275 3997 148

7

21 33

148 275 399

Node A
001

Node B
10

Node C
01

Node D
000

Node E
110

Node F
111Key

Membership vector

Fig. 4. Example of Skip Graph

10 13 27 29 36 40Level 0

Level 1

Level 2

Level 3

10 27

2913

36

40

Node A
000

Node B
100

Node C
010

Node D
110

Node E
001

Node F
101

45

45

Node G
011

47

47

Node H
111

10

27
29

13

36

40
45

47

10 13 27 29 36 40 45 47

Fig. 5. Example of routing by SFB

node has a key and a random sequence called a membership
vector. A membership vector consists of symbols contained in
a finite alphabet Σ, which is typically Σ = {0, 1}. As shown
in Fig. 4, Skip Graph creates a multiplex structure of a skip
list [12]. Level 0 is a doubly linked list that consists of all
nodes sorted in key order. In level i, each node composes a
doubly linked list with nodes whose membership vectors have
the same first i digits.

A node can issue a query by specifying a target key. The
query is forwarded among nodes in the same manner as a skip
list, i.e., it skips a long distance at higher levels and gradually
moves down to level 0. The path length is O(logN) where
the number of nodes is N . Note that the size of the routing
table on each node is also O(logN).

Since nodes are sorted in key order, each node can also
perform a range search; a query is delivered to nodes whose
keys are included in the specified range. Methods for routing
range queries in Skip Graph have been proposed [13], [14].
In SSA, we use SFB [14] due to its shorter path lengths and
lower communication costs2.

SFB utilizes a divide-and-conquer approach. Each node
that receives a range query divides the target range into
subranges based on the keys of its neighbor nodes within the
range, and then forwards the query with each subrange to the
corresponding neighbor node. As shown in Fig. 5, when node
A receives a range query with a target range (depicted as a blue
rounded rectangle at level 3) it first divides the range by the
key of node E into two subranges. Subsequently, it forwards
one of the two, the farther, to node E. Then, it repeats this
process for the remaining subranges at lower levels recursively.

Hereafter, we refer to a key of Skip Graph as a “label” as
described in Section I.

C. Topology of SSA

In SSA, we combine suffix arrays with Skip Graph to enable
partial match retrieval.

First, each node divides its labels into suffixes. Then, every
suffix is inserted in the Skip Graph as a virtual node. Although
in the usual Skip Graph each node has its own membership
vector, with SSA membership vectors are assigned for each
physical node. Virtual nodes of the same physical node have
the same membership vector. This enables the height to be

2In our previous work [10], we used MRF [15]. The difference between
SFB and MRF is disscussed in [14].

foobar baz ooar az o r z

foo

bar

baz oo

ar

az o

r

z

foo

baz

oo

az

o

z

Level 0

Level 1

Level 2

Node B (00) Node C (10)Node A (11)

Fig. 6. Example SSA topology

suppressed, which is reflected in the size of routing tables, to
O(logN) where N is the number of physical nodes [15].

Fig. 6 shows an example of SSA topology. In this topology,
there are three physical nodes, A, B, and C labeled “foo”,
“bar”, and “baz”, with membership vectors 11, 00, and 10
respectively. As can be seen, the level 0 list forms a suffix array
such that all physical nodes having a label that corresponds
to one substring are placed continuously. Therefore, we can
perform partial match retrieval efficiently by range search. For
example, if a partial match query is issued with the search
word “ba”, it is handled as a range query where the range
includes keys starting with “ba”. This query is eventually
delivered to two virtual nodes, i.e., “bar” of node B and “baz”
of node C.

Note that since SSA utilizes the topology maintenance
mechanism of Skip Graph, methods aiming at the improve-
ment of the topology can be applied [16]–[18]. By using these
methods according to the characteristic of each application
such as the locality of node placement, better performance
e.g., shorter path lengths might be obtained.

D. Routing in SSA

As mentioned previously, we use SFB [14] in SSA. Al-
though SFB achieves a shorter average path length than other
routing methods [13], [15], utilizing it in SSA can cause
inefficient routing paths because SFB does not assume the
use of virtual nodes.

Considering virtual node VN1 attempts to forward subrange
SR1 to virtual node VN2 and subrange SR2 to virtual node
VN3, the possible undesirable cases are described as follows.

(i) VN2 or VN3 is of the same physical node as VN1. For
example, if nodes A and G in Fig. 5 are of the same

physical node, the physical node receives the same query
twice.

(ii) VN2 and VN3 are of the same physical node. For
example, if nodes C E in Fig. 5 are of the same physical
node, the physical node receives the same query twice.

(iii) A virtual node of the physical node of VN2 is contained
in SR2. For example, if nodes B and F in Fig. 5 are of
the same physical node, the physical node receives the
same query twice.

To avoid these cases, we propose Multi-Key SFB (MK-SFB)
which extends SFB by aggregating the query processing and
forwarding as like Multi-key Skip Graph [15]. MK-SFB is
designed to work effectively under the assumption that each
physical node may have multiple keys (i.e., multiple virtual
nodes).

When a node receives a range query, the node first confirms
whether the range contains virtual nodes of the same physical
node. If such virtual nodes exist, it divides the range by the
keys of the virtual nodes and delegates subranges to the nodes
as internal processes of the physical node. This avoids case
(i).

Then, each of the above virtual nodes divides the subrange
it is responsible for into smaller subranges according to SFB,
but not yet forwards the subranges. Inside the physical node,
subranges to be forwarded to the same physical node are
aggregated and forwarded collectively to the physical node.
This avoids case (ii).

In addition, when each virtual node divides a subrange, it
can consider “sibling” virtual nodes of its neighbor virtual
node. For example, let nodes B and F be of the same physical
node in Fig. 5. Since node B is a neighbor of node A, node A
can obtain the label of the physical node of node B. Therefore,
node A can easily know the existence of node F by considering
the label’s suffixes. In this case, node A divides the subrange
into four smaller subranges by nodes F, E, C, and B. As a
result, case (iii) can be avoided. Although this technique relies
on the characteristic of SSA, i.e., a key of a virtual node is a
suffix of the key of its physical node, it can also be applied to
other cases that do not have such characteristic by exchanging
the information of child virtual nodes among connected nodes.

IV. ANALYTICAL COMPARISON

Here, we analytically compare SSA to the existing methods
described in Section II-A. In this section, we use the following
notations.

• N : number of physical nodes
• M : average number of labels for each physical node
• Lavg: average length of labels
• Ls: length of search word s

Table II shows a summary of the comparison.
Relative to search time, PIER and DST require

O(Ls logN), because they perform lookups in a DHT
multiple times according to the length of a search word. For
SSA, the height of the Skip Graph is O(logN), because
membership vectors are assigned for each physical node. In

TABLE II
COMPARISON OF PARTIAL MATCH RETRIEVAL METHODS

Search time Storage cost
PIER O(Ls logN) O(MLavg + logN)
DST O(Ls logN) O(MLavg + logN)
SSA O(logN) O(MLavg logN)

addition, the number of physical nodes at level i between
two virtual nodes connected at level i + 1 is expected to be
O(1)3; therefore, SSA incurs O(logN) search time. Note
that each method can be improved in some manner, e.g.,
parallel processing and caching; however, such improvements
are beyond the scope of this paper to clarify the essential
differences.

From a storage cost perspective, PIER requires that each
node has n-gram data and the routing table of a DHT.
Thus, the storage cost is O(MLavg + logN). For DST, each
node has the routing table of a DHT and the edges of a
suffix tree it is responsible for. Here, the number of edges
is O(MLavgN); therefore, the storage cost on each DST
node is O(MLavg + logN). In SSA, each physical node
has MLavg virtual nodes on average; thus, the storage cost
is expected to be O(MLavg logN). Although this indicates
SSA is disadvantageous, existing methods suffer from load
imbalance (Section II-B). Since the load on each node is
unpredictable, ensuring sufficient storage capacity for the
possible worst case may be required. Note that we evaluate
load imbalance in Section V-C.

V. EVALUATION

We evaluated SSA in simulation experiments. The simula-
tion program was implemented in Java (Java SE Development
Kit 8) and run on a machine with a quad-core CPU (Intel Core
i7-8650U 1.90 GHz), 16 GB memory, and the Windows 10
operating system.

Here, the following five methods were evaluated.
SSA : proposed method
SSA (old) : previous version of SSA [10]
PIER (3-gram) : PIER using 3-grams
PIER (2-gram) : PIER using 2-grams
DST : DST

In this evaluation, the simulator generated 10, 000 nodes
for each method. Each node has a single label from the set
of hashtags described in Section II-B (without duplication).
We considered six search word length patterns (search words
length: 3, 4, 5, 6, 7, 8) and prepared 1, 000 random partial
match queries for each pattern. Here, each query had two
kind of information, i.e., a search word and a source physical
node of partial match retrieval. The former was selected
randomly from existing substrings of corresponding length in
the hashtags. The latter was also selected randomly from the
10, 000 nodes such that the label of the selected node did not
contain the given search word.

3Strictly speaking, O(|Σ|) where |Σ| is the size of the alphabet for
membership vectors.

0

20

40

60

80

100

3 4 5 6 7 8

Av
er

ag
e p

at
h

le
ng

th

Search word length

SSA

SSA (old)

PIER (3-gram)

PIER (2-gram)

DST

Fig. 7. Average path length in 1, 000 queries

For PIER and DST, we used a DHT built on top of Skip
Graph. This was realized using “Routing by Numeric ID” in
SkipNet [19]. Using a DHT on top of Skip Graph is convenient
relative to fairness of the experimental conditions, such as
routing table size.

For all experiments, we set the size of the alphabet for
membership vectors to 2.

A. Search time

As mentioned in Section II-A, existing methods require
multiple exact match queries to process a single partial match
query. In contrast, SSA can perform partial match retrieval
using a single range query.

To confirm the influence on search time, we performed an
experiment to measure the average path length. For each search
word length, the simulator performed each of 1, 000 queries
and calculated the average path length from the physical source
node to the corresponding physical nodes. Then, the average
of the 1, 000 queries was calculated.

Fig. 7 shows the results. In PIER, the average path length
increased linearly with search word length, and that of DST
increased relatively gently. In contrast, SSA and SSA (old)
were essentially unaffected by search word length. With a
search word length of 8, the proposed SSA reduced the average
path length by more than 85% compared to the existing
methods.

Due to the improvement of the routing algorithm (Sec-
tion III-D), the average path length of SSA is shorter than that
of SSA (old), especially when using short search word lengths.
In principle, since the improvement is for routing within a
target range, the difference should be more prominent when
the number of results is large (i.e., the target range is wide). In
fact, we confirmed this in Fig. 8 which shows the average path
length of queries with greater than 100 search results. In these
queries, SSA reduced the average path length by more than
44% compared to SSA (old) with every search word length.

B. Communication cost

We also confirmed the tendencies of communication cost.
Similar to the search time experiment, the simulator performed
each of 1, 000 queries and counted the number of messages
exchanged among physical nodes for each search word length.
Then, the average of the 1, 000 queries was calculated.

Fig. 9 shows the results. Here, for all methods, search word
length of 3 caused a relatively larger number of messages.

0

20

40

60

80

100

3 4 5 6 7 8

Av
er

ag
e p

at
h

le
ng

th

Search word length

SSA

SSA (old)

PIER (3-gram)

PIER (2-gram)

DST

Fig. 8. Average path length in queries with greater than 100 results

This is considered to depend on the number of search results.
Fig. 10 shows the average number of results for each search
word length. As can be seen, shorter search word lengths
resulted in a larger average number of results. Especially in
PIER (2-gram), a short search word also caused false positive
results. Note that SSA, SSA (old), and DST yielded the same
number of results because they do not involve false positive
results. Fig. 11 shows the difference in the false positive rate
between PIER (2-gram) and PIER (3-gram). Using 3-gram
rather than 2-gram appears to be effective relative to avoiding
the influence of false positive; however, it has a disadvantage
of inability to search by words of two or less length.

In Fig. 9, PIER seems to have the tendency of proportional
increase to the search word length. DST appears to be insen-
sitive to search word length, despite the increasing tendency
of its average path length. This also appears to be caused by
the number of search results, i.e., longer search word length
simultaneously brings about longer average path length and
a smaller average number of search results. Nevertheless, the
average number of messages of PIER and DST is quite larger
than SSA and SSA (old). With a search word length of 8, the
proposed SSA reduced the number of messages by more than
85% compared to the existing methods.

C. Load balance

As described in Section II-B, PIER and DST involve load
imbalance. Fig. 12 and Fig. 13 plot the number of messages
and storage cost on each node in descending order, respec-
tively. The number of messages was measured using search
word length of 8. The storage cost is the sum of the number
of routing table’s entries and the number of node IDs stored
with n-grams (PIER) or edges (DST).

As shown in Fig. 12, SSA and SSA (old) have relatively
small deviation compared to PIER and DST.

As shown in Fig. 13, SSA and SSA (old) tend to have
greater storage cost than PIER and DST; however, the devi-
ations are small. Note that a good feature of the proposed
SSA is storage cost predictability. The storage cost of each
node in SSA is dependent on the number of labels (one in this
evaluation) which the node has and their length. In contrast, in
the existing methods, each node cannot know its storage cost in
advance because the data stored on each node are determined
by cryptographic hash functions. Fig. 14 shows the label length
for each storage cost rank. Here, the results are smoothed
with the moving average according to a subset size of 100.

0

20

40

60

80

100

3 4 5 6 7 8

Av
er

ag
e #

 o
f m

es
sa

ge
s

Search word length

SSA

SSA (old)

PIER (3-gram)

PIER (2-gram)

DST

Fig. 9. Average number of messages

0
4
8

12
16
20
24
28
32
36

3 4 5 6 7 8

Av
er

ag
e #

 o
f r

es
ul

ts

Search word length

SSA/SSA (old)/DST

PIER (3-gram)

PIER (2-gram)

Fig. 10. Average number of search results

0

0.05

0.1

0.15

0.2

0.25

0.3

3 4 5 6 7 8

Fa
lse

 p
os

iti
ve

 ra
te

Search word length

PIER (2-gram)

PIER (3-gram)

Fig. 11. False positive rate in PIER

1

10

100

1 10 100 1000 10000

of

 m
es

sa
ge

s

Rank

SSA

SSA (old)

PIER (3-gram)

PIER (2-gram)

DST

Fig. 12. Number of messages on each node

10

100

1000

10000

1 10 100 1000 10000

St
or

ag
e c

os
t

Rank

SSA/SSA (old)

PIER (3-gram)

PIER (2-gram)

DST

Fig. 13. Storage cost on each node

1

10

100

1 10 100 1000 10000

La
be

l le
ng

th

Storage cost rank

SSA/SSA (old)

PIER (3-gram)

PIER (2-gram)

DST

Fig. 14. Label length for each storage cost rank

As shown, it is clear that SSA and SSA (old) demonstrate a
similar tendency to that shown in Fig. 13, whereas the existing
methods appear to have no correlation with storage cost rank.
Such a feature in the existing methods may require that each
node ensures sufficient storage capacity for the possible worst
case.

VI. CONCLUSION

In this paper, we have proposed SSA to provide partial
match retrieval capability on overlay networks. We have also
proposed MK-SFB which aggregates the query processing and
forwarding for effective routing in SSA.

The proposed SSA yields lower communication costs and
better load predictability compared to existing methods. The
experimental results demonstrate that the proposed SSA re-
duces both the average path length and average number of
messages by greater than 85% compared to the existing PIER
and DST methods when using search word length of 8.

Future work includes improvement of storage costs and
providing capabilities of complex queries other than partial
match retrieval such as regular expression.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proc. ACM SIGOPS
Symp. Operating Syst. Principles, Oct. 2007, pp. 205–220.

[2] T. Akiyama, Y. Teranishi, R. Banno, K. Iida, and Y. Kawai, “Scalable
pub/sub system using OpenFlow control,” J. Inf. Process., vol. 24, no. 4,
pp. 635–646, Jul. 2016.

[3] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “UbiFlow:
Mobility management in urban-scale software defined IoT,” in Proc.
IEEE Int. Conf. Comput. Commun., Apr. 2015, pp. 208–216.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord : A scalable peer-to-peer lookup service for internet applica-
tions,” in Proc. Conf. ACM Special Interest Group Data Commun., Aug.
2001, pp. 149–160.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc.
IFIP/ACM Int. Conf. Distrib. Syst. Platforms and Open Distrib. Process.,
Nov. 2001, pp. 329–350.

[6] R. J. Huebsch, “PIER: Internet scale P2P query processing with dis-
tributed hash tables,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Univ. California, Berkeley, CA, USA, Mar. 2008.

[7] H. Zhuge and L. Feng, “Distributed suffix tree overlay for peer-to-peer
search,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 2, pp. 276–285,
Feb. 2008.

[8] U. Manber and E. W. Myers, “Suffix Arrays: A New Method for On-
Line String Searches,” SIAM J. Comput., vol. 22, no. 5, pp. 935–948,
Oct. 1993.

[9] J. Aspnes and G. Shah, “Skip Graphs,” ACM Trans. Algorithms, vol. 3,
no. 4, pp. 37:1–37:25, Nov. 2007.

[10] R. Banno, H. Sato, S. Oyama, and M. Kurihara, “A partial match
retrieval method on P2P networks using Skip Graph and suffix array,”
Comput. Softw., vol. 29, no. 3, pp. 164–180, Jul. 2012 (in Japanese).

[11] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and
I. Stoica, “Complex queries in DHT-based peer-to-peer networks,” in
Proc. Int. Workshop Peer-to-Peer Syst., Mar. 2002, pp. 242–250.

[12] W. Pugh, “Skip Lists : A probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, pp. 668–676, Jun. 1990.

[13] A. G. Beltran, P. Milligan, and P. Sage, “Range queries over Skip Tree
Graphs,” Comput. Commun., vol. 31, no. 2, pp. 358–374, Feb. 2008.

[14] R. Banno, T. Fujino, S. Takeuchi, and M. Takemoto, “SFB: A scalable
method for handling range queries on Skip Graphs,” IEICE Commun.
Express, vol. 4, no. 1, pp. 14–19, Jan. 2015.

[15] Y. Konishi, M. Yoshida, S. Takeuchi, Y. Teranishi, K. Harumoto, and
S. Shimojo, “An extension of Skip Graph to store multiple keys on
single node,” J. Inform. Process. Soc. Jpn. (in Japanese), vol. 49, no. 9,
pp. 3223–3233, Sep. 2008.

[16] F. Makikawa, T. Tsuchiya, and T. Kikuno, “Balance and proximity-aware
Skip Graph construction,” in Proc. Int. Conf. Netw. Comput., Nov 2010,
pp. 268–271.

[17] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Öznur Özkasap, “Locality
aware Skip Graph,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst.
Workshops, June 2015, pp. 105–111.

[18] T. Kawaguchi, R. Banno, M. Hojo, M. Ohnishi, and K. Shudo, “Self-
Refining Skip Graph: Skip Graph approaching to an ideal topology,” in
Proc. IEEE Consumer Commun. Netw. Conf., Jan. 2017, pp. 441–448.

[19] N. J. A. Harvey, J. Dunagan, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman, “SkipNet: A scalable overlay network with practical locality
properties,” in Proc. USENIX Symp. Internet Technologies and Syst.,
Mar. 2003, pp. 9–23.

