
Detouring Skip Graph:
A Structured Overlay Utilizing Detour Routes

Takeshi Kaneko∗¶, Ryohei Banno∗, Kazuyuki Shudo∗, Yusuke Aoki∗, Kota Abe†‡ and Yuuichi Teranishi‡§
∗ Tokyo Institute of Technology, Tokyo, Japan
† Osaka City University, Osaka, Japan

‡ National Institute of Information and Communications Technology, Tokyo, Japan
§ Osaka University, Osaka, Japan

Email: ¶kaneko.t.ay@m.titech.ac.jp

Abstract—Skip Graph, one of the structured overlays, provides
a scalable network owing to the routing path lengths of O(logn),
where n denotes the total number of nodes. However, there is
a problem that most of the routing paths are quite longer than
the shortest paths because each node in the network knows only
its neighbors, rather than the global topology. In general, long
routing paths lead to long delay times and low fault tolerance.
Herein, we propose Detouring Skip Graph, which shortens the
path lengths through the use of detour routes. It does not
require construction of extra links or modification of its topology;
thereby, it can succeed in shortening them while maintaining
the advantages of Skip Graph. The evaluation experiments show
that the average path length was shortened by approximately
20%–30% in comparison with Skip Graph.

Index Terms—Skip Graph, structured overlay, routing algo-
rithm, detour route

I. INTRODUCTION

Overlay networks are application-level logical networks
built on existing networks such as the Internet. Specially
structured overlays construct autonomous distributed networks
according to specific data structures or protocols; thereby
providing reachability to target nodes, high scalability, efficient
routings, and high fault tolerance. Owing to the properties, ap-
plication to large-scale distributed systems such as distributed
key/value stores [1], video streaming [2], and online games [3]
has been proposed. In recent years, application to the fields of
IoT and Blockchain is also expected [4], [5].

Skip Graph [6], one of the structured overlays, is a dis-
tributed data structure that provides the capability of range
queries as a result of preserving the order of keys by managing
data without hashing. Over the years, numerous extensions
and improvements of Skip Graph have been proposed, even in
recent studies [7], [8].

However, it is still a challenge that each node cannot take
full advantage of existing links because it knows only its
neighbors, rather than the global topology. Thus, the routing
paths tend to be quite longer than the shortest paths. In
general, overlay networks whose routing paths are long lead
to long delay times and low fault tolerance. Since most
application mentioned above of overlay networks requires the

This work was supported by JSPS KAKENHI Grant Numbers 19K20253,
New Energy and Industrial Technology Development Organization (NEDO),
and SECOM Science and Technology Foundation.

Fig. 1: An example of Skip Graph.

responsiveness and the reliability, shortening routing paths is
a critical demand for overlays including Skip Graph.

Herein, we propose an extension of Skip Graph which is
called Detouring Skip Graph. It shortens the path lengths
through the more efficient use of existing links while main-
taining the advantages of Skip Graph. Specifically, its routing
algorithm is different from that of Skip Graph in two ways:
each node 1) utilizes detour routes and 2) traverses adjacent
nodes from its maximum level.

The rest of this paper is organized as follows. Section II
presents an overview of Skip Graph and the related work on
shortening path lengths. Section III presents Detouring Skip
Graph in detail. Section IV presents the evaluation experiments
for the proposed method and the results. Finally, Section V
presents the conclusion of this study.

II. RELATED WORK

A. Skip Graph

Skip Graph is a distributed data structure designed based
on Skip List [9], and each node belongs to multiple sorted
doubly linked lists. Figure 1 shows an example of a topology
of Skip Graph. Each node has a key in a totally ordered set
and a random string called membership vector (MV), which

Fig. 2: A searchOp routing from node A to key 15.

plays a key role in constructing the topology of Skip Graph.
In the figure, the set of alphabets that are elements of MV is
{0, 1}. In a linked list at level l, the leading l digits of the MV
of every node is the same as that of all others. Particularly at
level 0, all nodes belong to one linked list. Therefore, each
node belongs to O(log n) linked lists. Further, by using the
same method as Skip List, Skip Graph achieves a routing path
length of O(log n) for a query to search a key ktarget. A detailed
explanation of the routing algorithm is presented below, where
it is assumed that the keys in the linked lists are sorted in
ascending order from left to right.

Herein, suppose node vcurrent in Skip Graph is receiving a
query searchOp to search a node that has a specific key.
The query has three information (vstart, ktarget, lprev): a start
node vstart, a target key ktarget, and the level lprev at which
the previous node sends the query. If vcurrent.key, which means
the key of vcurrent, equals to ktarget, vcurrent sends a query
foundOp to vstart since it means that vcurrent is the target
node. If vcurrent.key < ktarget, vcurrent traverses the right adjacent
nodes at the levels from lprev in descending order and sends a
search query searchOp to the first adjacent node vnext where
vnext.key ≤ ktarget. If vcurrent.key > ktarget, vcurrent traverses the
left adjacent nodes and sends a search query searchOp to
the next node in a similar manner.

Figure 2 shows a routing process for a query to target
key ktarget = 15 issued at node A on the condition that each
node follows the above method in the topology shown in
Figure 1. Then, the key sequence of the nodes on the path
is (0, 4, 9, 13, 15), and the path length is 4.

B. Shortening Path Lengths

The path length is 4 in Figure 2, however, there are shorter
paths in reality. For instance, if node A chooses node G at
level 2 instead of node C at level 1 as the next node, the key
sequence of the nodes on the path would be (0, 18, 15), and
the path length would be 2 (which is shorter than 4). Thus,
the routing of Skip Graph is inefficient in that it cannot fully
utilize the existing links. Therefore, various approaches have
been proposed for shortening the path lengths.

Fig. 3: Should node vcurrent select the detour route?

In the above example, at the route from node A to node G,
the magnitude relationship between the key of the node and
the target key ktarget is reversed. Routes like this are hereinafter
referred to as “detour routes.” The proposed method (described
later in detail) utilizes detour routes. It is similar to the method
proposed by Higuchi et al. [10] in terms of use of detour
routes. However, the subject of their method is not ordinary
Skip Graph but Skip Graph whose topology is balanced by
means of using linear hashing preserving the order.

There are already several methods to shorten path lengths of
Skip Graph routings: e.g., methods that involve construction
of extra links in the Skip Graph and appropriate routings on
the topology [11], [12], and methods that reconstruct or refine
the unbalanced topology resulting from randomly generated
MVs into the ideal topology [7], [8], [13], [14]. However,
the construction of extra links and the modification of the
topology lead to an increase in necessary transfer messages
and maintenance cost.

III. PROPOSED METHOD

The main idea of Detouring Skip Graph is the utilization
of detour routes. Moreover, the idea can be combined with
the technique traversing from maximum levels. This section
presents these ideas and the details of Detouring Skip Graph
whose routing algorithm combines them.

In the following, let K be a set of keys. To simplify, we
assume that K is a subset of rational numbers1 and multiple
nodes do not have the same key. Thus, arithmetic operations
and absolute values are well-defined on K.

A. Utilizing Detour Routes

The routing algorithm of Detouring Skip Graph utilizes
detour routes. The idea is based on the following argument.

Figure 3 shows a part of the topology of Figure 1. Let vnext

and vlower be the right neighbors of node vcurrent at level 1 and
0, respectively. Now, suppose vcurrent is receiving a query to
target key ktarget where 9 ≤ ktarget < 18. In a situation where
it follows the routing algorithm of Skip Graph, it selects vlower

as the next node. If ktarget = 15, the key sequence of the nodes
on the path would be (4, 9, 13, 15), and the path length would
be 3. However, in a situation where it selects vnext as the next
node, i.e., it uses the detour route, the key sequence would be
(4, 18, 15), and the path length would be 2. The path length of
the latter is shorter than that of the former. The effectiveness

1As a mathematical fact, any countable totally ordered set can be order
embedded into the set of rational numbers [15].

of such detour routes is dependent on the position of the target
key; if ktarget = 13, the path length of using the detour route
would be longer than that of using the ordinary route.

As shown in Figure 3, it can be determined from the center
of the node sequence at the lower level (level 0 in Figure 3)
whether vcurrent should select vnext or vlower to shorten the path
length. This section presents the routing algorithm that each
node determines the next node based on a detour criterion at
each level.

Algorithm 1: searchDROp in node vcurrent

/* utilizing Detour Routes */
1 upon receiving 〈searchDROp, vstart, ktarget, lprev〉 then
2 if vcurrent.key = ktarget then
3 send 〈foundOp, vcurrent〉 to vstart ;
4 return;
5 else if vcurrent.key < ktarget then
6 for lcurrent ← lprev downTo 0 do
7 vnext ← vcurrent.neighbors[R][lcurrent];
8 if vnext.key ≤ ktarget then
9 send 〈searchDROp, vstart, ktarget, lcurrent〉 to

vnext ;
10 return;
11 else if lcurrent > 0 then
12 vlower ← vcurrent.neighbors[R][lcurrent − 1];
13 if closeToRight(ktarget, vlower.key, vnext.key) then
14 send 〈searchDROp, vstart, ktarget, lcurrent〉 to

vnext ;
15 return;

16 else
17 for lcurrent ← lprev downTo 0 do
18 vnext ← vcurrent.neighbors[L][lcurrent];
19 if vnext.key ≥ ktarget then
20 send 〈searchDROp, vstart, ktarget, lcurrent〉 to

vnext ;
21 return;
22 else if lcurrent > 0 then
23 vlower ← vcurrent.neighbors[L][lcurrent − 1];
24 if ¬ closeToRight(ktarget, vnext.key, vlower.key) then
25 send 〈searchDROp, vstart, ktarget, lcurrent〉 to

vnext ;
26 return;

27 send 〈notFoundOp, vcurrent〉 to vstart;

28 function closeToRight(ktarget, kleft, kright)
29 kmid ← mid(kleft, kright);
30 return kmid < ktarget;

Algorithm 1 is a pseudocode of this algorithm. Herein,
vcurrent traverses adjacent nodes in the same way as Skip Graph
when node vcurrent receives a query searchDROp. However,
if vcurrent judges that using a detour route is better than not
using it, vcurrent selects the end node of the detour route as
the next node. Function closeToRight(ktarget, kleft, kright) can be
used to make this judgment. Let Iright be {k ∈ K | k ≥ kright}.
The function returns true if the signed distance from ktarget to
Iright is smaller than that from mid(kleft, kright) to Iright, i.e.,
kright − ktarget < kright − mid(kleft, kright); otherwise, it returns
false. Intuitively, it means that ktarget is closer to kright than

Fig. 4: A searchDROp routing from node A to key 15 where
mid(k1, k2) = k1+k2

2 .

mid(kleft, kright). Further, mid is a design parameter that can be
defined as a function before the construction of the topology
where it satisfies that the following 1) and 2) are approximately
equal for the set V of all participating nodes at any point in
time and any k1, k2 ∈ K (k1 ≤ k2).

1) #
{
k ∈ K | k1 ≤ k ≤ mid(k1, k2) ∧∃ v ∈ V, v.key = k

}
2) #

{
k ∈ K | mid(k1, k2) ≤ k ≤ k2 ∧∃ v ∈ V, v.key = k

}
We give some examples of defining mid. Let v.key, the key

of a node v, be regarded as a random variable. If

K = {0, 1, . . . , n− 1} and P{v.key = k} = 1

n
,

then
mid(k1, k2) :=

k1 + k2
2

.

If

K = {0, 1, . . .} and P{v.key = k} =
(
1

2

)k+1

,

then

mid(k1, k2) := − log2

(
2
(
1
2

)k1
+
(
1
2

)k2

3

)
.

By defining mid in this way, mid(vlower.key, vnext.key) or
mid(vnext.key, vprev.key) refers to key estimation of the center
of the lower-level node sequence. Thus, closeToRight plays
the appropriate role of a detour judgment.

In practice, it is difficult to obtain the distribution of the
keys beforehand. However, from the evaluation experiment
presented in Section IV, we observed that it is effective in
many cases for shortening path lengths by defining mid as:

mid(k1, k2) :=
k1 + k2

2
.

Figure 4 shows the routing process for a query to target key
ktarget = 15 issued at node A on the condition that each node
follows Algorithm 1 in the topology shown in Figure 1. The
key sequence of the nodes on the path is (0, 18, 15), and the
path length is 2, which is shorter than that of Figure 2.

B. Traversing from the Maximum Level

In addition to utilizing detour routes, we can improve the
routings of Skip Graph by making each node to traverse from
the maximum level.

As discussed in Section II-A, in the routings of Skip Graph,
node vcurrent traverses the adjacent nodes at the levels from
reception level lprev in descending order and determines the
first adjacent node vnext that satisfies the condition as the
next node. The levels are monotonically decreasing for the
entire routing. However, there are cases where adjacent nodes
at levels larger than lprev satisfy the condition. Moreover,
the larger the sending level, the larger the difference in key
between adjacent nodes. Therefore, the difference between the
key of the next node and the target key ktarget is not larger when
traversing from level vcurrent.maxLevel than when traversing
from level lprev, where v.maxLevel is the maximum level of
node v. Thus, it is effective in shortening the path lengths that
each node traverses from its maximum level.

Algorithm 2: searchMLOp in node vcurrent

/* traversing from Max Level */
1 upon receiving 〈searchMLOp, vstart, ktarget〉 then
2 if vcurrent.key = ktarget then
3 send 〈foundOp, vcurrent〉 to vstart ;
4 return;
5 else if vcurrent.key < ktarget then
6 for lcurrent ← vcurrent.maxLevel downTo 0 do
7 vnext ← vcurrent.neighbors[R][lcurrent];
8 if vnext.key ≤ ktarget then
9 send 〈searchMLOp, vstart, ktarget〉 to vnext ;

10 return;

11 else
12 for lcurrent ← vcurrent.maxLevel downTo 0 do
13 vnext ← vcurrent.neighbors[L][lcurrent];
14 if vnext.key ≥ ktarget then
15 send 〈searchMLOp, vstart, ktarget〉 to vnext ;
16 return;

17 send 〈notFoundOp, vcurrent〉 to vstart

Algorithm 2 is a pseudocode of this algorithm. When
node vcurrent receives a query searchMLOp, vcurrent traverses
adjacent nodes from vcurrent.maxLevel and sends a query
searchMLOp to the first node that satisfies the condition.
This routing differs from that of Skip Graph only in the start
level of traversing. Note that it is possible to use binary search
for finding a next node instead of linear search, which is faster,
but this code uses the latter for simplicity.

Figure 5 shows a routing process for a query to target key
ktarget = 15 issued at node A on the condition that each node
follows Algorithm 2 in the topology shown in Figure 1. The
key sequence of the nodes on the path is (0, 4, 9, 15), and the
path length is 3, which is shorter than that of Figure 2.

It should be noted that Algorithm 2 has the disadvantage of
increasing the computation costs incurred between receiving
a query and determining the next node, although it has the
advantage of shortening the path lengths. Let lMAX be the

Fig. 5: A searchMLOp routing from node A to key 15.

maximum value of the maximum levels of all nodes, which
is O(log n), and let H be the path length, which is O(log n).
Then, the sum of the time required for each node on a routing
path to determine the next node until finishing a rounting
process, except for the communication time and the I/O
processing time, is O(lMAX +H) = O(log n) for Skip Graph.
On the other hand, in the case of the following Algorithm 2,
it is O(H · lMAX) = O(log2 n). Especially when using binary
search, it is O(H log lMAX) = O(log n · log(log n)). These are
inferior to Skip Graph in terms of computational complexity.
However, the time taken for a routing is typically dominated
by the communication time, hence it is more important to
shorten path lengths in most cases.

C. Detouring Skip Graph: Combining Two Improvements

Because the two improved routing algorithms described
above are independent changes from the routing algorithm
of Skip Graph, an algorithm combining them can be defined
naturally. We refer an extension of Skip Graph that performs
such routing as Detouring Skip Graph.

When node vcurrent receives a query searchDSGOp, vcurrent

traverses adjacent nodes from vcurrent.maxLevel in the same
way as described in Section III-B and sends a query
searchDSGOp to the first node that satisfies the condition.
In the process, searchDSGOp uses detour routes based on
the detour judgment as described in Section III-A.

From the foregoing, Detouring Skip Graph can bring about
the shortening of path lengths for search queries. Unlike
the existing methods discussed in Section II-B, it does not
require construction of extra links or modification of its
topology. Therefore, there is no increase in message transfer
and management costs. Additionally, it is an extension that
maintains the good properties of Skip Graph.

D. Reachability of Detouring Skip Graph

Detouring Skip Graph is characterized in that the key
sequences of the nodes on a routing path are not monotonic in
order, which is a property that does not apply to Skip Graph.
You might consider that the routing process may lead to an
infinite loop. However, the reachability is guaranteed, which

is proved in this section. It should be assumed that Detouring
Skip Graph does not separate as a network.

Suppose a search query whose target key is k is being
issued. Then, each variable can be defined as follows.
• Let (a1, a2, . . .) be the key sequence of the nodes on the

routing path.
• Sk := {x ∈ K | x < k}.
• Tk := {x ∈ K | x > k}.
• Let (as1 , as2 , . . .) be the subsequence of (ai)i, whose

elements are all ai satisfying ai ∈ Sk.
• Let (at1 , at2 , . . .) be the subsequence of (ai)i, whose

elements are all ai satisfying ai ∈ Tk.
• Let binary relation �k, ≺k on Sk × Tk be:

– �k:= {(x, y) ∈ Sk × Tk | closeToRight(k, x, y)}
– ≺k:= {(x, y) ∈ Sk × Tk | ¬closeToRight(k, x, y)}.

Intuitively, x �k y implies that y is closer to k than x,
and x ≺k y implies that x is closer to k than y.

The query reaches the target node if and only if (ai)i is a
finite sequence. Thus, it is sufficient to show that (ai)i is finite.
If both (asj)j and (atj)j are strictly approaching k (i.e., they
are strictly increasing and strictly decreasing, respectively),
(ai)i converges to the key of the target node in finite steps
and (ai)i is a finite sequence.

Next, to show the strict monotonicity of each subsequence,
the function mid used as the detour judgment must exhibit the
following property.

Property 1: ∀x ∈ Sk,
∀ y ∈ Tk,

• x ≺k y ⇒

{
∀x′ ∈ Sk, [x′ ≤ x⇒ x′ ≺k y]
∀y′ ∈ Tk, [y′ ≤ y ⇒ x ≺k y′]

• x �k y ⇒

{
∀x′ ∈ Sk, [x′ ≥ x⇒ x′ �k y]
∀y′ ∈ Tk, [y′ ≥ y ⇒ x �k y′]

Property 1 is satisfied whenever mid is defined as the me-
dian estimation based on any probability distribution, e.g.,
mid(x, y) := x+y

2 . Then, the following lemma holds.
Lemma 1: ∀x1, x2 ∈ Sk,

∀ y1, y2 ∈ Tk,
•
[∃x ∈ Sk s.t. (x ≺k y1 ∧ x �k y2)

]
⇒ y1 < y2

•
[∃y ∈ Tk s.t. (x1 �k y ∧ x2 ≺k y)

]
⇒ x1 > x2

Proof: Suppose there exists x ∈ Sk such that x ≺k y1
and x �k y2. If y1 ≥ y2, then x �k y1 because of x �k y2 and
Property 1, however it contradicts x ≺k y1. Therefore, we have
that y1 < y2. The latter proposition can also be established in
the same way.
Lemma 1 derives the following theorem.

Theorem 1: (asj)j and (atj)j are strictly increasing and
strictly decreasing, respectively.

Proof: It is sufficient for each step i to show that:{
j > 1⇒ asj > asj−1

(if ∃j s.t. sj = i)

j > 1⇒ atj < atj−1
(if ∃j s.t. tj = i),

(∗)

where step i represents the process on the i-th node in the
routing path. This can be shown using mathematical induction.

Suppose (∗) holds at step 1, 2, . . . , i.

TABLE I: Routing algorithms used as the evaluation subjects.

searchOp : Skip Graph (Sec. II-A)

searchDROp : Utilizing detour routes (Sec. III-A)

searchMLOp : Traversing from max level (Sec. III-B)

searchDSGOp : Detouring Skip Graph (Sec. III-C)

1) If ai = k, then step i+ 1 does not exist because the
routing process is complete.

2) If ai ∈ Sk, then the four cases are considered:
(i) ai+1 ∈ Sk, (ii) ai+1 ∈ Tk, (iii) ai+1 = k, and
(iv) ai+1 does not exist. In case (i) and (iii), (∗) holds
at step i+ 1 because ai < ai+1 and ai+1 /∈ Sk ∪ Tk,
respectively. In case (iv), step i+1 does not exist because
the routing process is complete. In case (ii), because a
detour route is used, there exist j and x ∈ Sk such that
tj = i+ 1, x > ai, and x ≺k atj . From Property 1, we
have atj−1+1 �k atj−1 . If j > 1, then it implies that a
detour route was used at step tj−1 and that no detour
route was used at step tj−1 + 1, tj−1 + 2, . . . , i− 1
owing to the definition of subsequence (atj′)j′ .
Thus, atj−1+1, atj−1+2, . . . , ai ∈ Sk, and there exists
y ∈ Tk such that y < atj−1 and atj−1+1 �k y. From
Property 1, we have atj−1+1 �k atj−1 . In addition,
atj−1+1 < atj−1+2 < · · · < ai holds by the induction
hypothesis. From Property 1, we have ai �k atj−1

.
Thus, atj < atj−1

holds because of Lemma 1, i.e., (∗)
holds at step i+ 1.

3) If ai ∈ Tk, then (∗) holds at step i+ 1, which can be
shown in the same way as 2).

Therefore, the reachability to the target node is guaranteed
for any search query.

IV. EVALUATION

We evaluated the path length by conducting a simulation
experiment and observed the effect of the proposed method.
We experimented with the following three key generation
methods:
• Generated by uniform distribution.
• Generated by power-law distribution.
• Random English titles on Wikipedia.

A. Generated by Uniform Distribution

We used pseudorandom numbers to generate keys so that
the keys of participating nodes follows a uniform distribution
P{v.key = k} = 1

230 (k ∈ {0, 1, . . . , 2
30 − 1}) where v.key is

the key of a node v regarded as a random variable. Then, the
center estimation mid for this distribution is

miduniform(k1, k2) :=
k1 + k2

2
.

On the topology constructed based on the keys generated
by the above method, every node issued 100 search queries
whose target keys ktarget ∈ {0, 1, . . . , 230 − 1} are generated
by uniform distribution. We plotted the average of all path

Fig. 6: Average path lengths on a topology whose keys were
generated by uniform distribution.

lengths of the routings for these queries in Figure 6. The
horizontal axis represents the number of participating nodes
in increments of 100, and the vertical axis represents the
average path length. Each line corresponds to each rout-
ing method, where searchDSGOp(mid:uniform) and
searchDROp(mid:uniform) represent routings that in-
volve the use of miduniform as a center estimation for the keys.
Table I is a correspondence table between names of routing
algorithms and the section numbers with their descriptions.
Further, every routing method is executed on the same topol-
ogy for each number of nodes; and each topology is built by
adding nodes to the existing topology, rather than rebuilt from
scratch each time. These conditions are the same for the other
experiments discussed in the subsequent sections.

As a result, the average path lengths are shorter
in the order of searchDSGOp(mid:uniform),
searchDROp(mid:uniform), searchMLOp, and
searchOp. Furthermore, Detouring Skip Graph executing
searchDSGOp(mid:uniform) shortens the average path
lengths by about 32% compared to Skip Graph executing
searchOp.

B. Generated by Power-Law Distribution

We converted pseudorandom numbers to generate keys so
that the keys of participating nodes follow power-law distribu-

tion P{v.key ≤ k} =
∫ k

0

f(k)dk (0 ≤ k ≤ 230) where v.key

is the key of a node v regarded as a random variable, f denotes
a probability density function f(k) = ck10 (0 ≤ k ≤ 230), and

c denotes a constant that satisfies
∫ 230

0

f(k)dk = 1. Then, the

center estimation mid for this distribution is

midpower(k1, k2) :=

(
k10+1
1 + k10+1

2

2

) 1
10+1

.

The purpose of using power-law distribution is to evaluate the
effect of the proposed method on biased key distribution.

On the topology constructed based on the keys gen-
erated by the above method, every node issued 100

Fig. 7: Average path lengths on a topology whose keys were
generated by power-law distribution.

TABLE II: Average path lengths on a topology whose
keys were generated by power-law distribution where
n = 100, 1000, 10000.

n = 100 1000 10000

searchOp 4.75 9.31 11.41
searchDROp (mid:uniform) 4.46 8.38 9.76
searchDROp (mid:power) 4.44 8.37 9.70
searchMLOp 4.59 7.87 10.31
searchDSGOp(mid:uniform) 4.35 7.14 9.05
searchDSGOp(mid:power) 4.34 7.15 9.03

search queries whose target keys ktarget ∈ {0, 1, . . . , 230 − 1}
were generated by uniform distribution. We plotted the
average of all path lengths of the routings for these
queries in Figure 7. searchDSGOp(mid:power) and
searchDROp(mid:power) represent routings that involve
the use of midpower as a center estimation of keys.

As a result, the average path lengths were almost
the same in searchDSGOp(mid:uniform) and
searchDSGOp(mid:power), and we discovered that
using miduniform as a detour criterion is effective even if the key
distribution is biased. Table II lists the average path lengths
where the number of nodes n is 100, 1000, and 10000. The
numerical values also indicate that the average path lengths
of the routings following searchDSGOp(mid:uniform)
and searchDSGOp(mid:power) are almost the same. In
both routings, the average path length of searchOp was
shortened by about 20%.

C. Random English Titles on Wikipedia

We used random English titles obtained on Nov. 8, 2018
from API2 published by Wikipedia as keys. Specifically, each
title was considered as a single-byte character string, and we
used the string as a 256(= 28)-based integer key. The purpose
of using random titles is to evaluate the effect of the proposed
method in realistic situations.

2https://www.mediawiki.org/wiki/API:Main page (accessed Jan. 24, 2019)

Fig. 8: Average path lengths on a topology whose keys are
random English titles on Wikipedia.

On the topology constructed based on the keys obtained by
the above method, every node issued search queries whose
target keys are the keys of all nodes. We plotted the average
of all path lengths of the routings for these queries in Figure 8.

As a result, Detouring Skip Graph executing
searchDSGOp(mid:uniform) shortens the average
path lengths by about 24% compared to Skip Graph executing
searchOp. Although the detour criterion miduniform is not a
center estimation for this key distribution, it was found to be
effective in shortening the path lengths.

V. CONCLUSION

In this paper, we proposed Detouring Skip Graph, which
shortens the path lengths by using effectively the topology
that Skip Graph constructs. It introduces two techniques in the
routing algorithm of Skip Graph: each node 1) utilizes detour
routes and 2) traverses adjacent nodes from its maximum level.
In addition, we proved the reachability to the target node for
any search query.

Detouring Skip Graph does not require construction of
extra links and modification of its topology; thereby, it is
an extension that maintains the advantages of Skip Graph.
Through the evaluation experiments conducted, we confirmed
that the average path length was shortened by approximately
20% to 30% compared with the value obtained using Skip
Graph. Further, it was experimentally found that miduniform,
the average of the keys belonging to two nodes, is effective as
a detour criterion even for biased or realistic key distribution.

In the future, we plan to address analytical evaluation
of shortening path lengths and application of the proposed
algorithm to other extensions of Skip Graph.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 205–220.

[2] N. Ramzan, H. Park, and E. Izquierdo, “Video streaming over P2P
networks: Challenges and opportunities,” Signal Processing: Image
Communication, vol. 27, no. 5, pp. 401–411, May 2012.

[3] A. Yahyavi and B. Kemme, “Peer-to-peer Architectures for Massively
Multiplayer Online Games: A Survey,” ACM Comput. Surv., vol. 46,
no. 1, pp. 9:1–9:51, Jul. 2013.

[4] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an Optimized
BlockChain for IoT,” in Proceedings of the Second IEEE/ACM Inter-
national Conference on Internet-of-Things Design and Implementation,
ser. IoTDI ’17. New York, NY, USA: ACM, 2017, pp. 173–178.

[5] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “LightChain:
A DHT-based Blockchain for Resource Constrained Environments,”
arXiv:1904.00375 [cs], Mar. 2019.

[6] J. Aspnes and G. Shah, “Skip graphs,” ACM Transactions on Algorithms,
vol. 3, no. 4, pp. 37:1–37:25, Nov. 2007.

[7] S. Huq and S. Ghosh, “Locally Self-Adjusting Skip Graphs,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), Jun. 2017, pp. 805–815.

[8] A. Goyal, S. Batra, N. Kumar, G. S. Aujla, and M. S. Obaidat,
“Adaptive Skip Graph Framework for Peer-to-Peer Networks: Search
Time Complexity Analysis,” in 2018 IEEE Global Communications
Conference (GLOBECOM), Dec. 2018, pp. 1–6.

[9] W. Pugh, “Skip lists: A Probabilistic Alternative to Balanced Trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, Jun. 1990.

[10] K. Higuchi, M. Yoshida, T. Tsuji, and N. Miyamoto, “Correctness of
the routing algorithm for distributed key-value store based on order
preserving linear hashing and skip graph,” in 2017 18th IEEE/ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), Jun. 2017, pp.
459–464.

[11] M. Naor and U. Wieder, “Know Thy Neighbor’s Neighbor: Better
Routing for Skip-Graphs and Small Worlds,” in Peer-to-Peer Systems
III. Springer, Berlin, Heidelberg, Feb. 2004, pp. 269–277.

[12] A. G. Beltran, P. Sage, and P. Milligan, “Skip Tree Graph: A Distributed
and Balanced Search Tree for Peer-to-Peer Networks,” in 2007 IEEE
International Conference on Communications, Jun. 2007, pp. 1881–
1886.

[13] F. Makikawa, T. Tsuchiya, and T. Kikuno, “Balance and Proximity-
Aware Skip Graph Construction,” in 2010 First International Conference
on Networking and Computing, Nov. 2010, pp. 268–271.

[14] T. Kawaguchi, R. Banno, M. Hojo, M. Ohnishi, and K. Shudo, “Self-
Refining Skip Graph: Skip Graph Approaching to an Ideal Topology,”
in 2017 14th IEEE Annual Consumer Communications Networking
Conference (CCNC), Jan. 2017, pp. 441–448.

[15] P. Keef and D. Guichard, “Introduction to Higher Mathematics,”
https://www.whitman.edu/mathematics/higher math online/.

