
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2281

PAPER Special Section on Parallel and Distributed Computing and Networking

Interworking Layer of Distributed MQTT Brokers∗

Ryohei BANNO†a), Member, Jingyu SUN††, Nonmember, Susumu TAKEUCHI††,
and Kazuyuki SHUDO†, Members

SUMMARY MQTT is one of the promising protocols for various data
exchange in IoT environments. Typically, those environments have a char-
acteristic called “edge-heavy”, which means that things at the network edge
generate a massive volume of data with high locality. For handling such
edge-heavy data, an architecture of placing multiple MQTT brokers at the
network edges and making them cooperate with each other is quite effec-
tive. It can provide higher throughput and lower latency, as well as reducing
consumption of cloud resources. However, under this kind of architecture,
heterogeneity could be a vital issue. Namely, an appropriate product of
MQTT broker could vary according to the different environment of each
network edge, even though different products are hard to cooperate due to
the MQTT specification providing no interoperability between brokers. In
this paper, we propose Interworking Layer of Distributed MQTT brokers
(ILDM), which enables arbitrary kinds of MQTT brokers to cooperate with
each other. ILDM, designed as a generic mechanism independent of any
specific cooperation algorithm, provides APIs to facilitate development of
a variety of algorithms. By using the APIs, we also present two basic co-
operation algorithms. To evaluate the usefulness of ILDM, we introduce a
benchmark system which can be used for both a single broker and multi-
ple brokers. Experimental results show that the throughput of five brokers
running together by ILDM is improved 4.3 times at maximum than that of
a single broker.
key words: MQTT, publish/subscribe, distributed systems, IoT, edge com-
puting

1. Introduction

MQTT has attracted much academic and industrial interest
in recent years as one of the key technologies of IoT ser-
vices [1]. It is a protocol of topic-based pub/sub messaging,
in which messages are exchanged through logical channels
called “topics”, as shown in Fig. 1. MQTT uses a server
called “broker” to manage topics and mediate between pub-
lishers and subscribers. This paradigm provides decoupling
between clients, e.g., each publisher has no concern with the
location of subscribers that will receive its message [2].

Although typical IoT systems place an MQTT broker
in the cloud [3] as shown in Fig. 2 (a), this centralized archi-
tecture can cause some issues due to the following charac-
teristics of IoT data:

• A massive volume of data is generated at the network

Manuscript received January 7, 2019.
Manuscript revised May 28, 2019.
Manuscript publicized July 30, 2019.
†The authors are with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
††The authors are with NTT Network Innovation Laboratories,

Tokyo, Musashino-shi, 180–8585 Japan.
∗This is a paper on system development.

a) E-mail: banno@computer.org
DOI: 10.1587/transinf.2019PAK0001

Fig. 1 Message flows of topic-based pub/sub.

Fig. 2 Architectures for handling edge-heavy data.

edge, rather than in the cloud.
• Data have high locality; data generated in an area are

often utilized in the same area.
• Data are much utilized for event-driven services, so that

high real-time performance is indispensable.

Such characteristics are called “edge-heavy” [4]. The prob-
lems of managing edge-heavy data with the above cloud-
based architecture are resource consumption and latency.
That is, heavy load is concentrated with oppressing cloud
resources such as the network bandwidth, as well as latency
tends to be long due to the distance between devices and
cloud data centers.

Cooperation of multiple MQTT brokers placed at the
edges is a solution to the problems. In this architecture,
shown in Fig. 2 (b), the cloud broker does not need to com-
municate with all clients directly, so that the consump-
tion of cloud resources is reduced and consequently over-
all throughput is increased. Furthermore, it makes latency
lower for locally consumed data, because the edge brokers
are closer to IoT devices. There could be several varia-
tions of this architecture; cascaded edge brokers for han-

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

2282
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

dling densely placed devices, cooperation without the cloud
broker if there is no client in the cloud, etc.

Assuming the edge-based architecture, especially as-
suming the exchange of IoT data among various fields such
as homes, factories, and offices, there is an issue of hetero-
geneity. Namely, an appropriate product of an MQTT bro-
ker is different according to an environment of each network
edge or an organization/individual responsible for its oper-
ation†. For example, industrial computers in factories and
set-top boxes in small offices are both possible to be edge
servers for placing brokers.

Developing a number of broker products from scratch
for each environment or responsible organization/individual
results in an increase in costs, including costs for continuing
maintenance. Furthermore, IoT projects orienting horizon-
tal linking of data generally has a problem of the chicken-
or-egg causality dilemma; increasing the number of partners
who has data is desirable to enhance the value of the project,
while the value of the project is needed to increase the num-
ber of partners. Hence, obtaining a clear estimation of cost-
effectiveness in advance is difficult, so that suppressing the
cost for enabling the small start is quite important.

To enable brokers placed at the heterogeneous edges to
cooperate with each other at low cost, utilizing existing bro-
ker products is desirable. There are lots of choices: open
source or proprietary, software or embedded appliance, dif-
ference in supported OSs, difference in functional features,
and so on. However, different products are hard to coop-
erate. Although some of existing products have functions
of cooperation between multiple brokers, e.g., “bridge” of
Mosquitto [5] as described in Sect. 7, the standardized speci-
fication of MQTT does not provide interoperability between
brokers [6]. On the other hand, implementing cooperation
functionality into all of the products, which are different in
various aspects such as the programming language, results
in huge development and maintenance cost.

In this paper, we propose Interworking Layer of Dis-
tributed MQTT brokers (ILDM), which enables arbitrary
kinds of brokers to cooperate with each other. This means
that ILDM enables deploying the edge-based architecture by
utilizing existing heterogeneous broker products to be easy.
ILDM is designed as a generic mechanism independent of
any specific cooperation algorithm. By providing APIs, it
facilitates rapid development of a variety of algorithms. We
also propose two basic algorithms which have different char-
acteristics to show the feasibility of ILDM and the versatility
of its APIs.

To evaluate the usefulness of ILDM, we introduce a
benchmark system which can be used for both a single bro-
ker and multiple brokers. Our benchmark method ensures
that error ratio of resulted performance is not more than five
percent.

The contributions of this paper are fourfold:

†An appropriate product may be determined not only by tech-
nical reasons but also by non-technical reasons, e.g., business rela-
tionships.

• First, we give an architecture of ILDM-based coopera-
tion and the APIs.
• Second, we present two basic cooperation algorithms.
• Third, we provide a practical method for benchmark of

MQTT brokers.
• Fourth, we show the usefulness of ILDM through ex-

periments.

This paper is an extended version of a paper presented
at CloudNet 2017 [7]. The differences include a detailed
information of the architecture and the APIs (Sect. 2), the
implementation of cooperation algorithms (Sect. 4), and the
components of the benchmark system (Sect. 5).

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of MQTT protocol, and illustrates
a fundamental idea of ILDM with its architecture and APIs.
Section 3 describes two basic algorithms of cooperation us-
ing ILDM, while the implementations of them are explained
in Sect. 4. In Sect. 5, we introduce a benchmark system for
MQTT brokers. Section 6 discusses the results of exper-
iments to confirm the usefulness of ILDM. Section 7 ex-
plains related works. Finally, we summarize and conclude
this paper in Sect. 8.

2. MQTT and ILDM

This section firstly describes MQTT protocol, and subse-
quently presents the architecture of ILDM.

2.1 MQTT Protocol

MQTT [8] is a protocol of topic-based pub/sub, standard-
ized by OASIS. It is known for lightweight design such as a
minimum of two bytes header size. As we stated before, a
broker manages topics and mediates between clients. Below
is an example flow of using MQTT.

1. A client X sends CONNECT message to a broker to
establish a connection.

2. X sends SUBSCRIBE message to the broker. It in-
forms the topics of interest of X to the broker.

3. Another client sends PUBLISH message to the broker,
with specifying a topic. If the topic is included in the
above topics of interest, this message is forwarded to X
by the broker.

4. X sends DISCONNECT message to the broker, to ter-
minate the connection.

MQTT provides several useful functions for clients,
such as “QoS”, “Retain” and “Will”.

QoS provides capability of configuring the level of de-
livery confirmation. A client and a broker try to confirm the
delivery of a PUBLISH message and resend it if needed, ac-
cording to the QoS level. Three levels are defined: “At most
once delivery”, “at least once delivery”, and “exactly once
delivery”.

Retain is for delivering a latest message in the past to a
new subscriber. A PUBLISH message has a flag of Retain.

BANNO et al.: INTERWORKING LAYER OF DISTRIBUTED MQTT BROKERS
2283

Fig. 3 Interworking Layer of Distributed MQTT brokers.

If the flag is set to true, a broker stores the message until
a new PUBLISH message whose Retain flag is true of the
same topic arrives. This stored message will be forwarded
to new subscribers of the topic.

Will enables to inform unexpected close of a connec-
tion. CONNECT message has a flag of Will. If the Will
Flag is set to true, a broker stores a Will message and Will
topic which are also included in the CONNECT message.
The Will message will be published from the broker, when
it detects the connection with the client which has sent the
CONNECT message is unexpectedly closed.

2.2 Overview of ILDM

In this paper, we propose Interworking Layer of Distributed
MQTT brokers (ILDM). ILDM-based cooperation is com-
posed by multiple brokers and ILDM nodes. An ILDM node
is arranged between a broker and clients as shown in Fig. 3.
As well as relaying MQTT clients and a broker as if it were
a proxy, an ILDM node can connect with other ILDM nodes
so that multiple and arbitrary kinds of brokers can commu-
nicate with each other via ILDM nodes.

Regarding an ILDM node, we assume the following
notations: local client denotes a client directly connecting
with the ILDM node, local broker denotes a broker directly
connecting with the ILDM node, remote ILDM node de-
notes one of the other ILDM nodes included in the whole
cluster, neighbor ILDM node denotes one of the remote
ILDM nodes directly connecting with the ILDM node, re-
mote client denotes a client connecting with a remote ILDM
node, remote broker denotes a broker connecting with a re-
mote ILDM node.

As there can be a variety of cooperation algorithms,
an ILDM node provides APIs which facilitate rapid imple-
mentation. Figure 4 illustrates the components of an ILDM
node.

We abstracted commonly used functions as five com-
ponents: session manager, message listener, event listener,
status listener, and message generator. These components
have programming interfaces so that various algorithms can
be easily implemented. Details of practical algorithms we
also propose as “PF” and “SF” are discussed later, in Sect. 3.

The architecture of ILDM can be regarded as a mi-
croservice in the Service-Oriented Architecture (SOA).
Namely, ILDM provides a function block of cooperation
with other brokers, and enables flexible development and

Fig. 4 Components of ILDM node.

operation in the long-term by enhancing the modularity†.
Note that SOA is somewhat disadvantageous in the aspect
of performance in general. In Sect. 6, we clarify the over-
head of utilizing ILDM.

From such a viewpoint, ILDM is useful not only for
improving the performance such as throughput but also for
comparing cooperation algorithms. Unlike developing a
cooperable broker from scratch, ILDM-based implementa-
tions do not have differences in quality of source codes of
functions irrelevant to cooperation. By utilizing this charac-
teristic, we can fairly compare cooperation algorithms.

Note that the design of ILDM assumes heterogeneous
environments and organizations/individuals responsible for
them as described in Sect. 1. Although utilizing existing
protocol-independent scaling techniques such as virtualiza-
tion can be useful if brokers are placed in uniform environ-
ments, e.g., data centers, it is rather difficult to use such
techniques in the assuming situation. Especially, some of
the broker products themselves have characteristics which
make it difficult to apply the existing scaling techniques. For
example, Mosquitto [5] is single-threaded, so that increasing
the number of cores is not effective. One of the lineups of
MessageSight [9] is as an appliance, so that it cannot use
software techniques for general purpose servers.

Major APIs provided by the components are listed in
Table 1. Details of these APIs are described in the following
sections.

2.2.1 Session Manager

Session manager manages communication sessions con-
necting with a local broker, local clients and neighbor ILDM
nodes.

createSession is provided for creating a new session
with a neighbor ILDM node or a local broker††. The type

†The ability to utilize an existing broker product as it is is ad-
vantageous; we can leave the maintenance, e.g., updating, and op-
eration to the vendor or the community of the product, and focus
on ILDM.
††Note that creation of a session between an ILDM node and

its local client is triggered by the client, involving the automatic
generation of a corresponding session with its local broker inside
the ILDM node. createSession is mainly used for creating a ses-
sion with a neighbor ILDM node, or, with a local broker such as to
forward MQTT messages from neighbor ILDM nodes.

2284
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Table 1 Major APIs of ILDM node.

Component API

Session manager

S e s s i o n I n f o c r e a t e S e s s i o n (Address ip , i n t p o r t)

void c l o s e S e s s i o n (S e s s i o n I n f o s e s s i o n)

boolean sendMessage (S e s s i o n I n f o s e s s i o n , byte [] message)

S e s s i o n I n f o g e t P a i r e d S e s s i o n (S e s s i o n I n f o s e s s i o n)

Message listener void mqt tMessageAr r ived (S e s s i o n I n f o s e s s i o n , MsgType type , byte [] message)

Event listener void onTcpDown (S e s s i o n I n f o s e s s i o n)

void o n R e c v F a i l u r e (S e s s i o n I n f o s e s s i o n , Except ion e x c e p t i o n)

Status listener

void o n S e s s i o n E s t a b l i s h e d (S e s s i o n I n f o s e s s i o n)

void o n S e s s i o n C l o s e d (S e s s i o n I n f o s e s s i o n)

void onI ldmStop ()

void onIldmAdd (Address ip , i n t p o r t)

void onIldmRemove (Address ip , i n t p o r t)

Message generator byte [] c r e a t e M q t t M e s s a g e (MsgType type , MqttParam p a r a m e t e r s)

SessionInfo indicates meta-information regarding a session,
including a session identifier, session status, and input/out-
put streams. Session identifiers can be used for distinguish-
ing the type of each session, e.g., a local client session† or
a neighbor ILDM node session††, by storing them into an
associative array or other data structure as needed. clos-
eSession is used to close an existing session. sendMes-
sage sends out a message to a specified session. It returns a
boolean value indicating that the transmission is succeeded
or not. The message argument is a byte array, e.g., an
MQTT message. getPairedSession is for obtaining a ses-
sion making a pair with a specified session. When an ILDM
node receives a TCP connection request on the listening port
for local clients, it automatically creates a session with the
local broker. These two sessions make a pair.

2.2.2 Message Listener

Message listener has an asynchronous callback API:
mqttMessageArrived. It is called when an ILDM node
receives an MQTT message. The type MsgType indicates
the type of MQTT messages, e.g., CONNECT, CONNACK,
and PUBLISH. This callback API is typically a start point of
the algorithm-specific processes. If session is a local client’s
session, the ILDM node can relay the MQTT message to the
local broker by using getPairedSession and sendMessage,
and then behave according to a cooperation algorithm by
using the copy of the message.

Since this API enables to execute arbitrary processes
when an ILDM node receives an MQTT message, it is use-
ful for not only cooperation, but also whatever intermediate
processing, e.g., validation of data format.

†A session identifier of a new local client session can be ob-
tained when mqttMessageArrived is called with a CONNECT
message. Afterward, the session identifier of a corresponding local
broker session can also be obtained by using getPairedSession.
††A session identifier of a new ILDM node session can also be

obtained when mqttMessageArrived is called with a CONNECT
message. As described later in Sect. 4.1, a CONNECT message
from a neighbor ILDM node has a client-ID including a specific
character string which can be used for distinguishing from a CON-
NECT message from a local client.

Fig. 5 Status transitions.

2.2.3 Event Listener

Event listener has asynchronous callback APIs. onTcp-
Down is called when an ILDM node detects unexpected
termination of a TCP connection, while onRecvFailure is
called when an ILDM node failed to receive a message on a
TCP connection.

2.2.4 Status Listener

Status listener enables to insert arbitrary processes in the
middle of status transitions.

We define three statuses regarding sessions as shown
in Fig. 5 (a). When an ILDM node established a TCP con-
nection, the status of the session changes from CLOSED
to ESTABLISHED. When terminating the TCP connection
begins, the status changes to TERMINATING. After fin-
ishing the termination process, it changes to CLOSED.

We also define four statuses regarding the process of
an ILDM node, as shown in Fig. 5 (b). When an ILDM
node is started, the status changes from STOPPED to RUN-
NING. When the ILDM node begins to add or remove a
neighbor ILDM node, it changes to ILDM ADDING or
ILDM REMOVING. After finishing the process to add or
remove, it changes back to RUNNING. Note that adding/re-
moving a neighbor ILDM node can occur when an ILDM
node starts to run and reads a configuration file or when
an operator executes built-in commands at run time, as de-
scribed later in Sect. 4.4.

Status listener has following synchronous callback
APIs: onSessionEstablished is called after the status of

BANNO et al.: INTERWORKING LAYER OF DISTRIBUTED MQTT BROKERS
2285

the session specified as the argument changes to ESTAB-
LISHED. Similarly, onSessionClosed is called after the
status changes to CLOSED. onIldmStop is called when
the status of an ILDM node changes to CLOSED, i.e.,
just before the ILDM node is terminated. onIldmAdd
is called when the status of an ILDM node changes to
ILDM ADDING. The process of adding a neighbor ILDM
node will be coded in this callback. onIldmRemove is used
in the same manner for removing.

2.2.5 Message Generator

Message generator is a utility component. createMqttMes-
sage returns an MQTT message as a byte array. The type
MqttParam indicates the parameters of MQTT messages,
e.g., client identifier and keep-alive interval.

2.3 Authentication and Authorization

Although MQTT 3.1.1 specification [6] does not provide de-
tailed protocols for authentication and authorization besides
providing several simple fields such as a user name and a
password, these security functionalities are crucial in prac-
tical use. Accordingly, we discuss the security aspects of
ILDM based on current implementation stated in Sect. 4. In
the following, we assume that each ILDM node makes a pair
with an MQTT broker and is placed in a local area network
(LAN) together with the broker. MQTT clients are placed
inside or outside the LAN and connects to the ILDM node.

Some of the security measures are available in the use
of ILDM: for one thing, we can use connection encryption
between a client and an ILDM node such as by inserting ex-
isting TLS termination proxy, e.g., nginx [10]. For another,
we can use security-related functions of a broker with regard
to the relationship between the broker and its local client,
since the intermediated ILDM node creates an MQTT ses-
sion for each session created by a client and relays MQTT
messages as they are. For example, user authentication by
using the fields of a user name and a password in a CON-
NECT message is available.

On the other hand, several restrictions also exist: it
is hard to use connection encryption between a client and
its local broker in an end-to-end manner. This is because
an ILDM node requires to read each MQTT message to
cooperate with other ILDM nodes. Although connection
encryption between an ILDM node and its local broker is
considered less necessary due to the above assumption of
placement of them, the inability of utilizing encryption func-
tion of an MQTT broker is one of the limitations of current
ILDM. In addition to the end-to-end encryption, managing
authorization over multiple brokers also has difficulty. Let’s
consider a simple ACL (Access Control List) based autho-
rization like implemented in Mosquitto, where permissions
such as read (subscribe) and write (publish) are granted
to specified user names or client IDs. In regard to read-
permission, it works; every message received by a client
has always gone through its local broker, and thereby only

granted clients can read messages as long as the ACL on
each broker is appropriately configured. However, in regard
to write-permission, it does not work; prohibited PUBLISH
messages can be propagated via ILDM. Since an ILDM
node does not have information about remote clients, e.g.,
user names, connected to its neighbor ILDM node, a broker
cannot allow/deny a message from its “remote” client based
on its user name or client ID. This is another limitation of
current ILDM.

There are some possibilities of addressing limitations
by future development. For example, we can use connection
encryption between a client and an ILDM node without an
additional TLS termination proxy by implementing the fea-
ture in ILDM itself. Adding the authorization functionality
to an ILDM node also can address the difficulty of handling
authorization over multiple brokers. As Ramachandran et al.
have proposed [11], utilizing blockchain techniques is one
of the ways to achieve consistent management over multiple
brokers.

3. Cooperation Algorithms

In this section, we propose two basic cooperation algo-
rithms: Publication Flooding (PF) and Subscription Flood-
ing (SF). These algorithms suppose ILDM nodes are con-
nected in a tree structure which does not include closed
paths.

3.1 PF-Based Cooperation

PF is a method to share each PUBLISH message among all
brokers via ILDM nodes. Each ILDM node relays MQTT
messages received from a local client to its local broker. Re-
garding a PUBLISH message, an ILDM node does not only
relay, but also transfers to its neighbor ILDM nodes. ILDM
nodes, which receive the transferred PUBLISH message,
transfer it to their neighbors recursively, as well as send it
to their own local broker. Eventually, all connected brokers
receive the PUBLISH message and forward it to their local
clients subscribing to the corresponding topic.

Figure 6 shows an example. There are five sets of a
broker and an ILDM node: B1 and I1 to B5 and I5. There are
also three clients: C1 to C3. We consider the following three
steps.

1. Step 1: C1 subscribes to a topic t.
2. Step 2: C2 subscribes to the topic t.
3. Step 3: C3 publishes to the topic t.

Dotted arrows represent the flow of SUBSCRIBE messages,
while solid arrows are of PUBLISH messages.

When I2 and I3 receive a SUBSCRIBE message from
C1 and C2, they just relay it to their local brokers. As well as
being relayed alike, a PUBLISH message from C3 is trans-
ferred by I5 to I3, and spread to all ILDM nodes in a chain
reaction.

2286
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 6 Example of PF-based cooperation.

Fig. 7 Example of SF-based cooperation.

3.2 SF-Based Cooperation

Unlike PF, the basic idea of SF is to share subscription infor-
mation among ILDM nodes. When an ILDM node receives
a SUBSCRIBE message, it informs the subscription infor-
mation such as topic names and QoS levels to its neighbor
ILDM nodes, as well as relays the message to its local bro-
ker. We call this operation between two ILDM nodes “inter-
subscribe”, because it looks like the subscribe operation of
the MQTT protocol. For example, when an ILDM node X
informs the information to an ILDM node Y , it means that
“ILDM node X inter-subscribes to topics on ILDM node Y”.

When an ILDM node is about to inter-subscribe on a
neighbor ILDM node, it checks overlapping with existing
subscriptions. If the new subscription information is com-
pletely contained in the existing, it will not inter-subscribe
redundantly. That is, inter-subscribe operations between
ILDM nodes are to share only the difference from existing
subscriptions.

Regarding a PUBLISH message, as well as relaying
to the local broker, an ILDM node transfers it to neighbor
ILDM nodes which have inter-subscribed to the topic of the
message. ILDM nodes which receive the transferred PUB-
LISH message send it to their own local broker. They fur-
ther transfer the message to their neighbor ILDM nodes in
the same manner. Eventually, all brokers which have local
clients subscribing to the topic receive the PUBLISH mes-
sage and forward it to corresponding subscribers.

Figure 7 shows an example. The topology and the sce-
nario are the same as Figure 6. When I2 receives a SUB-
SCRIBE message from C1, it does not only relay the mes-
sage to its local broker, but also inter-subscribes on I1, I3

and I4. I3 further inter-subscribes on I5. In the next step, I3

receives a SUBSCRIBE message from C2 and subsequently

inter-subscribes on I2. I3 does not inter-subscribe on I5, be-
cause I3 has already inter-subscribed in the first step. Simi-
larly, I2 does not inter-subscribe on I1 and I4. A PUBLISH
message from C3 is transferred by I5 to I3, because I3 has
inter-subscribed to the topic t on I5. I3 also transfers the
message to I2, and finally C1 and C2 receive the message.

3.2.1 Procedure to Inter-Unsubscribe

In regard to inter-unsubscribing, we assume the following
procedure:

1. When an ILDM node receives a request of unsubscrib-
ing to a topic t from a local client or inter-unsubscribing
to t from a neighbor ILDM node, it processes the re-
quest.

2. After that, it inter-unsubscribes regarding all of the
inter-subscriptions except for those meeting one of the
following two conditions:

• If there is a local client subscribing to t on the
ILDM node, it must keep inter-subscription to t
on its all neighbor ILDM nodes.
• If there is a neighbor ILDM node X inter-

subscribing to t on the ILDM node, it must keep
inter-subscription to t on its all neighbor ILDM
nodes except for X.

By these, ILDM nodes can keep an appropriate spanning
tree of subscriber nodes without exchanging global infor-
mation about the topology.

3.3 Comparison of PF and SF

In PF method, each broker receives all PUBLISH messages

BANNO et al.: INTERWORKING LAYER OF DISTRIBUTED MQTT BROKERS
2287

even if it has no corresponding subscribers. This means that
the total number of ingress messages on each broker is basi-
cally the same as the case of a single broker. Therefore, the
effect of load distribution mainly depends on a dispersion
condition of subscribers. The more scattered the subscribers
are, the more effective this method is.

In SF method, a PUBLISH message is delivered to bro-
kers which have subscribers of the same topic as the PUB-
LISH message. Brokers, which do not have such subscribers
and are not on the paths of delivering the message, do not
receive it. Hence, this method is effective when publishers
and subscribers of a same topic are convergently placed on
a small sub-tree.

Note that these methods are, so to speak, a kind
of application-level multicast. In this context, utilizing
network-level multicast protocols such as PIM (Protocol-
Independent Multicast) is one of the means of communi-
cation among brokers. However, such protocols have diffi-
culty in handling inter-domain routing. Assuming the ex-
change of IoT data among various fields over a wide area as
described in Sect. 1, application-level multicast like PF/SF
methods are considered suitable.

4. Implementation of Cooperation Algorithms

We implemented an ILDM node and PF/SF methods in Java,
based on the MQTT version 3.1.1 specification. We di-
verted the message format of MQTT to the communica-
tion between ILDM nodes, because of its lightness. That
is, adjacent ILDM nodes establish TCP connections and ex-
change MQTT messages, e.g., SUBSCRIBE message for
inter-subscribing.

In this section, we describe how the cooperation algo-
rithms are implemented.

4.1 Communication between ILDM Nodes

As described above, adjacent ILDM nodes exchange MQTT
messages: using a PUBLISH message for transferring a
PUBLISH message, while using a SUBSCRIBE message
for inter-subscribing. They also use PINGREQ/PINGRESP
messages to confirm connections. To distinguish connec-
tions with one neighbor ILDM node from with others, ad-
jacent ILDM nodes exchange their identifiers by using the
client-ID field of a CONNECT message. This client-ID has
a specific character string so that it can also be used to dis-
tinguish the session type from the local client sessions. Re-
garding other parameters in a CONNECT message, protocol
name and protocol level are used to validate whether the new
connection is of supporting version or not. The keep-alive
interval field is used to check the timeout of PINGREQ/PIN-
GRESP messages. Other parameters are not used in the cur-
rent implementation; it focuses on exchanging minimum es-
sential information by using the MQTT message format, to
clarify the feasibility of ILDM. Although utilizing some pa-
rameters like user name and password can improve the secu-
rity of connections between ILDM nodes, such betterment

from the practical viewpoint is a part of future works.
Characteristically, we implemented a multi-session

mechanism to improve entire throughput. An ILDM node
can have multiple TCP connections for each neighbor ILDM
node. Before the ILDM node transfers a PUBLISH mes-
sage, it selects one connection to be used in a round-robin
fashion. The number of connections per one neighbor ILDM
node can be set by a configuration file.

An ILDM node creates a session with its local broker
for each connection with neighbor ILDM nodes. The ses-
sion is used for forwarding the transferred PUBLISH mes-
sages to the broker.

4.2 Relaying between Clients and Broker

An ILDM node relays MQTT messages from its local
clients to its local broker, including messages of retransmis-
sion caused by QoS control. PINGREQ/PINGRESP mes-
sages are also relayed so that clients and the broker can
confirm connections. Note that timeout of PINGREQ/PIN-
GRESP messages causes disconnection by a client or a bro-
ker. An ILDM node detects the disconnection by using onS-
essionClosed API, and then finds the paired session by us-
ing getPairedSession API and disconnects the session if it
exists.

In regard to a CONNECT message, it has some pa-
rameters. As described above, client-ID is used to distin-
guish sessions inside an ILDM node. An ILDM node also
uses parameters of protocol name and protocol level to val-
idate whether the new connection is of supporting version
or not. Parameters related to “will” and clean-session are
also used by an ILDM node as needed as described later in
Sects. 4.5.3 and 4.5.4. Other parameters including autho-
rization and authentication-related ones, e.g., user name, are
simply relayed to the local broker.

An ILDM node processes relaying in parallel to
improve performance, except for SUBSCRIBE/UNSUB-
SCRIBE messages and their acknowledgement messages.
Regarding those messages, relaying is processed serially be-
cause switching the order can cause unexpected status. For
example, if a client subscribes to a topic and then unsub-
scribes to that topic, reversing the order causes the topic still
being subscribed after unsubscribing.

4.3 Transferring between Adjacent ILDM Nodes

When using PF method, an ILDM node transfers a PUB-
LISH message received from a local client to adjacent
ILDM nodes, asynchronously with relaying to the local bro-
ker. Like MQTT protocol, QoS control for transferring a
PUBLISH message between adjacent ILDM nodes is avail-
able. The QoS level is set in a configuration file statically.

In case of SF method, an ILDM node receiving a SUB-
SCRIBE message inter-subscribes when it has not inter-
subscribed to corresponding topics yet, after it has suc-
cessfully finished relaying a SUBACK message to the local
client. When the ILDM node receives a PUBLISH message,

2288
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 8 Add/remove neighbor ILDM nodes in SF method.

it transfers the message in the same manner as in PF method
if the topic of the message is inter-subscribed by adjacent
ILDM nodes. If it receives a PUBLISH message with the
retain flag on, it transfers the message to adjacent ILDM
nodes even though the topic is not inter-subscribed. This
makes sure each broker can send out an appropriate retained
message when a new subscriber of the corresponding topic
comes.

4.4 Adding/Removing Neighbor ILDM Nodes

Our implementation has a configuration file and some built-
in commands which can be executed at run time. By these,
we can specify neighbor ILDM nodes to add or remove not
only statically but also dynamically. The process of adding
or removing can be implemented by using onIldmAdd or
onIldmRemove callbacks described in Sect. 2.2.4.

In case of PF method, the only thing an ILDM node
has to do is creating/closing sessions when adding/removing
neighbor ILDM nodes.

When using SF method, an ILDM node additionally
needs to synchronize the status of inter-subscribing. For
adding, the ILDM node calculates the set of topics to
which it has already inter-subscribed. Subsequently, it inter-
subscribes to all the topics of the set on the new neighbor
ILDM node. If the ILDM node does not have existing neigh-
bor ILDM nodes, the set of topics to which its local clients
have subscribed is used instead. The new neighbor ILDM
node also inter-subscribes on the ILDM node in the same
manner. Afterward, both ILDM nodes newly paired pro-
ceed the normal process of being inter-subscribed. For re-
moving, ILDM nodes, which are about to disconnect, inter-
unsubscribe against each other.

Figure 8 shows an example. I2 and I4 are initially not
connected. When I2 and I4 add each other as a new neighbor,
I2 inter-subscribes to the topic t1 and t2 on I4, because I1 and
I3 have inter-subscribed to these topics. I4 inter-subscribes
to the topic t3 to which C3 has subscribed. I2 subsequently
inter-subscribes on I1 and I3 by adding the topic t3.

Note that current ILDM does not assume concur-
rent addition/removal of multiple ILDM nodes. Espe-
cially in SF method, concurrent addition/removal may cause

an inconsistent situation such as nonexistence of an inter-
subscription which should be.

Regarding the failure of an ILDM node, its neighbor
ILDM nodes can detect it by using the onTcpDown API.
In that case, each of them carries out the removal proce-
dure. If the failed ILDM node comes back, and even if it
causes re-connection of divided sub-trees, the previous sta-
tus can be restored by simply adding it as a new neighbor.
This is because ILDM nodes have no status which should
be synchronized in PF method and can keep an appropri-
ate spanning tree of subscriber nodes without exchanging
global information of the topology in SF method.

4.5 Characteristic Functions of MQTT

As we described in Sect. 2, MQTT has some specific func-
tions such as QoS, Will, Retain, and Clean-session. Both
implementations of PF and SF enable MQTT clients to use
these functions transparently over multiple brokers.

Unless otherwise specified, the descriptions in the fol-
lowing sections are common to PF and SF.

4.5.1 QoS

Both in PF and SF, an ILDM node relays QoS-related mes-
sages such as PUBACK so that QoS level configuration is
available between a local broker and local clients. Further,
we can apply the idea of QoS control to transferring a PUB-
LISH message between adjacent ILDM nodes. This enables
distributed brokers to adjust a trade-off of reliability and per-
formance.

Note that current ILDM does not provide QoS func-
tionality between a client and its remote broker/brokers in
an end-to-end manner. Hence, a PUBLISH message with
QoS level 1 or 2 may not be delivered to some remote bro-
kers whereas it is assured that its local broker receives it.
Such a possibility of the inconsistent situation is one of the
limitations of current ILDM. As a possibility by future de-
velopment, we can consider implementing consistent QoS
management into ILDM. For example, when an ILDM node
receives a PUBLISH message with QoS level 1, consistent
management can be achieved by sending back a PUBACK
message to the source client after confirming all brokers re-
ceive the PUBLISH message at least once. Since such a
mechanism is considered to affect the performance of ILDM
significantly, considering suitable strategies is one of the im-
portant future works.

4.5.2 Retain

PF method can provide Retain function without adding spe-
cial processes, because each broker receives all PUBLISH
messages and stores them if they have retain-flag being set
to true. In case of SF method, when an ILDM node receives
a PUBLISH message with retain-flag set to true, it needs to
transfer the message to adjacent ILDM nodes even though

BANNO et al.: INTERWORKING LAYER OF DISTRIBUTED MQTT BROKERS
2289

the topic is not inter-subscribed. This makes sure each bro-
ker can send out an appropriate retained message when a
new subscriber of the corresponding topic comes.

4.5.3 Will

According to the MQTT specification of version 3.1.1,
PUBLISH messages from a broker do not have any informa-
tion to know whether they are will-messages or not. How-
ever, an ILDM node is desired to be able to transfer will-
messages to its neighbor ILDM nodes as necessary. To do
this, we implemented the ILDM node so as to store a will-
message and a will-topic internally when it receives a CON-
NECT message.

When an ILDM node detects the unexpected closing of
a network connection with a local client or the local broker,
and if the will flag of the connection is set to be true, it sends
out the corresponding will-message to its neighbor ILDM
nodes. The ILDM node needs not to send the will-message
to local clients, because the local broker sends it. In case of
SF method, sending will-messages to neighbor ILDM nodes
is executed only if the will-topics are inter-subscribed.

4.5.4 Clean-Session

When using PF method, there is no specific process regard-
ing the clean-session.

In case of SF method, an ILDM node keeps the status
of inter-subscribing related to a local client whose connec-
tion has the clean-session flag set to be f alse, even if the
connection is unexpectedly closed.

5. Benchmark System

To verify the effects of ILDM, we designed and constructed
a benchmark system which can be applied for both a single
broker and multiple brokers.

5.1 Performance Indexes

We use the following four performance indexes.

Ingress throughput
The number of messages which brokers receive from
publishers per unit time.

Egress throughput
The number of messages which brokers send out to
subscribers per unit time.

Latency
Required time since a publisher sends a message until
a subscriber receives it.

Loss rate
The ratio of the number of missed messages to the
number of messages which subscribers should receive.

Figure 9 shows the components of the benchmark sys-
tem. Multiple publishers and subscribers are ran for mea-
suring throughput and loss rate. We denote these clients by

Fig. 9 Components of benchmark system.

t-client. Another pair of a publisher and a subscriber is also
placed on a server different from those for t-clients. We de-
note these clients by l-client. They specify same topic so
that latency can be acquired by calculating the turnaround
time. In parallel, resource usage on each server is recorded,
e.g., CPU usage.

5.2 Load Testing Tool

We developed a load testing tool, which is operated as
t-clients and l-clients. We used the client library of
SurgeMQ [12] known for its high performance so that the
tool can send/receive PUBLISH messages with high fre-
quency. The tool has the following functions:

• Subscribe to topics according to a pre-defined scenario.
• Send PUBLISH messages to topics at a certain inter-

val during certain period of time, according to a pre-
defined scenario. t-clients and l-clients can be config-
ured with different intervals.
• Record logs of sending and receiving PUBLISH mes-

sages with timestamps.
• Gather logs recorded on multiple clients after the dura-

tion.
• Calculate performance indexes from the logs.

During the measurement period of time, the tool
records a timestamp when: (i) it sends a PUBLISH mes-
sage, and (ii) it receives a PUBLISH message.

By using (i) of t-clients, the tool calculates the ingress
throughput for each second. Similarly, the egress throughput
for each second is also calculated by using (ii).

For acquiring latency, the tool uses the difference be-
tween (i) and (ii) of l-clients. Since the tool sets identifiers
of a client and a message to a payload, it can determine the
correspondence of timestamps.

Regarding loss rate, the tool firstly calculates the num-
ber of PUBLISH messages to be received by t-clients. This
can be derived analytically by considering the scenario, i.e.,
the number of subscribers belonging to each topic, and the
actual number of produced messages calculated by (i). Sec-
ondly the tool calculates the number of arrived messages

2290
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

from (ii). By using these, it can calculate the loss rate as the
ratio of the number of missed messages.

5.3 Benchmark Method

The aim of benchmark is to find out the limit of performance
of brokers. Assuming every t-client acting a publisher sends
PUBLISH messages at a same interval, we define the limit
of performance as follows.

Definition 1. If measured throughput satisfies the following
restriction, the performance is under the limit.

{egress throughput}
{ingress throughput} × {sp-ratio} ≥ 0.99

where sp-ratio =

∑
i P(ti) × S (ti)
∑

i P(ti)
,

P(ti) = {number of publishers of ith topic},
S (ti) = {number of subscribers of ith topic}

This is based on the idea that if egress throughput is
less than ingress throughput multiplied by sp-ratio, the num-
ber of pending messages in the brokers is monotonically in-
creasing. In other words, this definition represents the limit
of allowable continuous load.

To find the maximum performance satisfying the re-
striction defined in Definition 1, we introduce a benchmark
method. This method tries to find the point of the very limit
by varying the interval of PUBLISH messages. It is con-
ducted along with the following steps.

Step 1: Conduct measurement repeatedly with doubling the
interval of sending a PUBLISH message. For ex-
ample: 1ms, 2ms, 4ms,

Step 2: From the results of Step 1, find the minimum inter-
val satisfying the restriction in Definition 1.

Step 3: Divide the segment between the minimum interval
and the smaller interval next to the minimum inter-
val into 20. For example, if the minimum interval is
4ms, we divide the segment between 4ms and 2ms
like as: 2ms, 2.1ms, 2.2ms, . . . , 3.9ms, 4ms.

Step 4: Conduct measurement for each interval calculated
in Step 3†.

Step 5: From the results of Step 4, find the minimum inter-
val satisfying the restriction in Definition 1.

Finally, the result by using the minimum interval clarified in
Step 5 indicates the limit of performance.

This result is ensured that the error ratio is not more
than five percent. In other words, the throughput resulted by
using the smaller interval next to the minimum interval is at
most 1.05 times larger than using the minimum interval. We

†Although it is considered efficient to use binary search instead
of dividing into 20 intervals, the measurement method stated here
is rather suitable for automatizing and parallelizing the measure-
ment.

can prove it as follows:

Proof. We assume that x is the minimum interval in Step 2.
Therefore x/2 is the smaller interval next to the minimum
interval. Here the stepping width calculated in Step 3 is (x−
x/2)/20 = x/40. We denote the width as y. The maximum
error ratio is at least x/(x−y)−1 and at most (x/2+y)/(x/2)−
1. Consequently, the highest error ratio is 0.05. �

To evaluate the performance appropriately, it is also im-
portant whether there is a bottleneck caused by things other
than the performance of brokers. We considered the follow-
ing viewpoints:

• TCP flow control caused by overloaded receiving on
subscribers.
• Ethernet flow control caused by lacking bandwidth of

subscribers’ side.
• TCP retransmission caused by packet loss on the net-

work.

In our benchmark system, we monitored above matters by
checking the window size in TCP ACK frames, occurrence
of PAUSE frames, and retransmission logs.

6. Evaluation

We conducted some experiments by using the benchmark
system described in Sect. 5. The aim of the experiments is
to confirm the usefulness of ILDM; namely, clarify whether
it can improve the throughput and how it affects the latency
and the loss rate, compared to using a single broker like the
cloud-based architecture.

6.1 Experimental Settings

In each experiment, we ran the load testing tool for 80 sec-
onds. The performance indexes stated previously were cal-
culated by excluding the first and last 10 seconds, i.e., sub-
stantial measurement time was 60 seconds. QoS level was
set to 0, and the size of payload of each PUBLISH message
was 32 bytes.

The configuration of topics and clients depicted in
Fig. 10 are as follows:

• There are five topics for measuring throughput and loss

Fig. 10 Configuration of topics and clients.

BANNO et al.: INTERWORKING LAYER OF DISTRIBUTED MQTT BROKERS
2291

Fig. 11 Evaluation of single brokers.

Table 2 Spec of servers.

Type S 1 Type S 2

Processor Atom C2750 (8 core, 2.4
GHz)

Xeon E5-2690V3 (12 core,
2.6 GHz) × 2

Memory 16 GB 256 GB
OS Ubuntu 14.04 Ubuntu 14.04
NW 1 GbE 10 GbE

rate: from “topic1” to “topic5”. There also be “topic6”
for measuring latency.
• As t-clients, the five topics have 10 publishers and 10

subscribers respectively. Thus, sp-ratio is 10.
• As l-clients, “topic6” has a publisher and up to five sub-

scribers. The publisher sends a PUBLISH message for
each one second.

We calculated the average of ingress/egress through-
put and latency in the measurement time of 60 seconds,
and found the limit of performance by using our benchmark
method.

6.2 Hardware Environments

In the evaluation, we use servers described in Table 2 with
a non-blocking L2 switch. There are 10 type S 1 servers and
one type S 2 server, and we used an appropriate number of
servers for each evaluation pattern.

Power saving functions such as EIST (Enhanced In-
tel SpeedStep Technology) are disabled to avoid unexpected
performance control and to clarify the relation between the
spec of the servers and the results of measurement.

The time of servers on the benchmark system are syn-
chronized by using an NTP server placed in the same net-
work segment.

6.3 Evaluation of Single Brokers

As preliminary experiments, we evaluated the performance
of open-source MQTT brokers alone.

We used the following four products: Mosquitto 1.4.5,
Moquette 0.8 [13], RabbitMQ 3.6.0 [14], and ActiveMQ
5.13.3 [15]. Note that Moquette and ActiveMQ are imple-
mented in Java, and we used Oracle Java SE 8. JVM param-
eters in using these brokers were: using parallel GC, 8 GB
of initial and max heap size in an S 1 server, and 64 GB of
initial and max heap size in an S 2 server. We measured the

Table 3 Patterns of measurments.

Pattern Description
A Using one broker with one ILDM node.
B Using 5 brokers with ILDM. t-clients are

placed with no locality.
C Using 5 brokers with ILDM. t-clients are

placed with high locality.
D Using 5 brokers with ILDM. t-clients are

placed with low locality.

performance by changing the types of servers, S 1 and S 2,
on which we ran the brokers.

Figure 11 (a) and 11 (b) shows the results of through-
put. As the benchmark method indicates, egress through-
puts are almost equal to ingress throughputs multiplied
by sp-ratio. When using the S 1 server, the performance
of ActiveMQ and Mosquitto are the tops. ActiveMQ is
slightly larger, but almost even. Regarding the S 2 server,
Mosquitto is the largest and its egress throughput reaches
over 600, 000. It can be seen that there is a different
tendency of performance improvement among brokers by
changing the server type, S 1 and S 2. One of the possible rea-
sons is the difference in implementation design; Mosquitto
is single-threaded, whereas others are multi-threaded. Since
Mosquitto is optimized to run in a single thread and has no
overhead of managing threads, it may be more sensitive to
the performance of a single core than others.

Figure 11 (c) shows the result of latency. As for latency,
the shorter the better. In case of the S 1 server, Mosquitto
has the shortest latency. On the other hand, using the S 2

server, every broker has approximately less than 1 millisec-
ond latency. ActiveMQ is the best, but the difference is quite
small.

In these measurements, the loss rate was zero for all
patterns.

6.4 Evaluation of ILDM-Based Cooperation

We evaluated the performance of ILDM-based cooperation.
Although the principal feature of ILDM is the capability of
connecting heterogeneous brokers, we used one kind of bro-
ker to clarify the performance characteristics of ILDM itself.
We chose Mosquitto because it indicated relatively better
performance among the four brokers in Sect. 6.3.

Table 3 states the patterns of measurements. In these
patterns, each pair of a broker and an ILDM node is placed

2292
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 12 Evaluation of ILDM-based cooperation.

in an S 1 server.
Pattern B, C, and D use five pairs of a broker and an

ILDM node connected in a row. Each ILDM node has the
same number of local t-clients, i.e., 20 t-clients. These pat-
terns have a difference of locality of those 100 t-clients.
Placement of t-clients on each ILDM node is as follows:

pattern B: Two publishers and two subscribers for every
five topics.

pattern C: 10 publishers and 10 subscribers of one topic.
pattern D: Eight publishers and eight subscribers of one

topic, one publisher and one subscriber of a dif-
ferent topic, one publisher and one subscriber of
another different topic.

In pattern B, C, and D, each of five ILDM nodes has
a l-client as a subscriber of topic6. Only one ILDM node
placed at the end of the list of the five ILDM nodes has one
more l-client as a publisher of topic6. Hence, five data of
latency are obtained every second in the measurement time
of 60 seconds.

Figure 12 (a) and 12 (b) shows the results of through-
put. “PF” and “SF” in the legend denote the cooperation
algorithms. The results of single Mosquitto broker are de-
picted again for comparison, on the right side of the figures.
Same as results in Sect. 6.3, egress throughputs are almost
equal to ingress throughputs multiplied by sp-ratio.

By comparing pattern A and S 1 of Mosquitto, we can
see that the overhead of using an ILDM node is not so
large; it was suppressed to approximately 10 percent. Re-
sults of pattern B, C, and D indicate that ILDM-based co-
operation provides better throughput compared with using a
single broker. Especially in pattern C with SF method, the
throughput overtook the case of using a single broker on the
S 2 server. Since the spec of type S 2 is quite higher than type
S 1, this is an impressive result.

It can be said that locality of placing clients affects the
performance, by comparing patterns B, C and D. High lo-
cality made throughput larger, especially with SF method.
This is due to the characteristic of SF method described in
Sect. 3.3. Considering edge-heavy data, having high local-
ity, such tendency could be effective.

Figure 12 (c) shows the result of latency. Here also
the results of single Mosquitto broker are depicted again for
comparison. Basically the patterns using multiple brokers

are inferior, because a PUBLISH message is forwarded with
multi-hop until it arrives at corresponding subscribers.

Pattern A shows approximately 10 milliseconds. Al-
though this is larger than S 1, the result is considered not to
impair the effect of reducing latency in the edge-based ar-
chitecture, since RTT between IoT devices and data centers
could be over 100 milliseconds if it across different coun-
tries.

In pattern B, both cases of PF and SF seem to have
the same load of throughput. Therefore, the latency of SF
method is a little longer due to its complicated process-
ing compared to PF method probably. On the other hand,
pattern C and D show that latency of PF method is longer
than that of SF method. The reason for this is considered
that more redundant messages are propagated in PF method
compared to SF method. Pattern C is the case with the high-
est throughput, so that brokers and ILDM nodes running
with PF method tend to be busy and take much time for
handling PUBLISH messages.

In these measurements, the loss rate was zero for all
patterns.

7. Related Work

Some of existing MQTT products have functions enabling
multiple brokers to cooperate with each other. Mosquitto [5]
and VerneMQ [16] have a function called “bridge”. It en-
ables brokers to forward PUBLISH messages according to
predefined rules, e.g., sets of a target broker and topics.
This can be used such as for constructing a wireless mesh
network [17]. VerneMQ also has a function of “cluster”,
which makes multiple brokers to share MQTT-related sta-
tuses such as subscriptions dynamically and to behave as
if they were logically a single broker. Several products
have such a clustering feature, e.g., HiveMQ [18], Rab-
bitMQ [14], and EMQ [19]. Each of them has its own ap-
proach for sharing the statuses. For example, VerneMQ
uses Plumtree [20] for replication of subscriptions and re-
tained messages [21]†, whereas RabbitMQ and EMQ use
Mnesia [22] for their data storage. These approaches have
pros and cons respectively, e.g., difference in the tolerance

†Detailes can be found in: https://github.com/vernemq/
vernemq/issues/83#issuecomment-246173311 (accessed 2019-05-
23).

BANNO et al.: INTERWORKING LAYER OF DISTRIBUTED MQTT BROKERS
2293

for network partitions. MessageSight [9] can be configured
in an HA configuration, i.e., two brokers cooperate so that
when the primary-node stops the standby-node can continue
to process MQTT messages. Since these cooperation func-
tions are implementation-dependent, only certain and same
kinds of brokers can cooperate with each other.

Dynomite [23] makes existing data stores, e.g., Redis
and Memcached, into a distributed data store. The aim is to
provide high availability and resiliency on storage engines
which do not inherently have those functionalities. Bond-
Flow [24] proposes a system enables encapsulated web ser-
vices to interconnect. These are similar to ILDM from the
viewpoint of modularizing functionality of interwork, while
the target is different from ILDM.

There are existing methods of topic-based pub/sub with
mesh-based topologies [25], [26], unlike that PF and SF as-
sume a tree structure which does not include closed paths.
PIQT [27], which is based on PIAX [28], is one of the im-
plementations using such mesh-based methods. We can ob-
tain better characteristics like scalability and reliability by
implementing these methods in ILDM.

As far as we know, there are no existing proposals of
connecting heterogeneous MQTT brokers and thereby no
quantitative evaluation of its performance characteristics.

8. Conclusion

In this paper, we proposed a novel mechanism called ILDM
which enables heterogeneous MQTT brokers to cooperate
with each other. The APIs provided by ILDM enable to de-
velop a variety of cooperation algorithms easily. Two basic
algorithms, PF and SF, and a practical benchmark system
for MQTT brokers were also presented.

We evaluated the usefulness of ILDM with the bench-
mark system. By connecting five brokers via ILDM, the
throughput increases approximately two to four times than
using a Mosquitto broker alone.

Our future work includes evaluating the edge-based ar-
chitecture in comparison with the cloud-based architecture
with actual environments, confirming characteristics of per-
formance with combinations of different kinds of broker
products, and developing more scalable cooperation algo-
rithms.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Communications Surveys Tutorials,
vol.17, no.4, pp.2347–2376, 2015.

[2] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys, vol.35,
no.2, pp.114–131, 2003.

[3] A. Popov, A. Proletarsky, S. Belov, and A. Sorokin, “Fast prototyp-
ing of the internet of things solutions with ibm bluemix,” HICSS,
pp.1064–1072, 2017.

[4] D. Okanohara, S. Hido, N. Kubota, Y. Unno, and H. Maruyama,
“Krill: An architecture for edge heavy data,” ASBD, 2013.

[5] Mosquitto. mosquitto.org (accessed 2019-01-07).

[6] OASIS Message Queuing Telemetry Transport (MQTT) TC,
“MQTT version 3.1.1 plus errata 01.” OASIS, 2015.

[7] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissem-
ination of edge-heavy data on heterogeneous mqtt brokers,” IEEE
CloudNet, pp.1–7, 2017.

[8] MQTT. mqtt.org (accessed 2019-01-07).
[9] W.J. Chen, R. Gupta, V. Lampkin, D.M. Robertson, and N.

Subrahmanyam, Responsive Mobile User Experience Using MQTT
and IBM MessageSight, IMB Corp., 2014.

[10] nginx. nginx.org (accessed 2019-05-22).
[11] G.S. Ramachandran, K.-L. Wright, L. Zheng, P. Navaney, M.

Naveed, B. Krishnamachari, and J. Dhaliwal, “Trinity: A byzantine
fault-tolerant distributed publish-subscribe system with immutable
blockchain-based persistence,” IEEE ICBC, pp.227–235, 2019.

[12] SurgeMQ. github.com/influxdata/surgemq (accessed 2019-01-07).
[13] Moquette. github.com/andsel/moquette (accessed 2019-01-07).
[14] RabbitMQ. www.rabbitmq.com (accessed 2019-01-07).
[15] ActiveMQ. activemq.apache.org (accessed 2019-01-07).
[16] VerneMQ. vernemq.com (accessed 2019-01-07).
[17] A.A.D. Cruz, M.L.A. Parabuac, and N.M.C. Tiglao, “Design and

implementation of a low-cost and reliable wireless mesh network
for first-response communications,” IEEE GHTC, pp.40–46, 2016.

[18] HiveMQ. www.hivemq.com (accessed 2019-01-07).
[19] EMQ. emqtt.io (accessed 2019-05-23).
[20] J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,”

IEEE SRDS, pp.301–310, 2007.
[21] GitHub - VerneMQ. github.com/vernemq/vernemq (accessed 2019-

05-23).
[22] H. Mattsson, H. Nilsson, and C. Wikström, “Mnesia — A distributed

robust DBMS for telecommunications applications,” Practical As-
pects of Declarative Languages, vol.1551, pp.152–163, 1998.

[23] Dynomite. github.com/Netflix/dynomite (accessed 2019-01-07).
[24] J. Balasooriya, M. Padhye, S.K. Prasad, and S.B. Navathe, “Bond-

flow: A system for distributed coordination of workflows over web
services,” IEEE IPDPS, pp.121a–121a, 2005.

[25] R. Banno, S. Takeuchi, M. Takemoto, T. Kawano, T. Kambayashi,
and M. Matsuo, “Designing overlay networks for handling exhaust
data in a distributed topic-based pub/sub architecture,” Journal of
Information Processing, vol.23, no.2, pp.105–116, 2015.

[26] Y. Teranishi, R. Banno, and T. Akiyama, “Scalable and locali-
ty-aware distributed topic-based pub/sub messaging for iot,” IEEE
GLOBECOM, pp.1–7, 2015.

[27] PIQT distributed pub/sub broker. piqt.org (accessed 2019-01-07).
[28] Y. Teranishi, “PIAX: Toward a framework for sensor overlay net-

work,” IEEE CCNC, pp.1–5, 2009.

Ryohei Banno received his Bachelor’s and
Master’s degrees from Hokkaido University in
2010 and 2012, then earned his Ph.D. from To-
kyo Institute of Technology in 2018. He was
a researcher in NTT Network Innovation Labo-
ratories. Since 2018, he has been a researcher
in Tokyo Institute of Technology. He received
IPSJ Best Paper Award in 2015. His research
interests include distributed systems, especially
structured overlay networks. He is a member
of IEEE, IEEE Computer Society, IPSJ, and

IEICE.

http://dx.doi.org/10.1109/comst.2015.2444095
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.24251/hicss.2017.126
http://dx.doi.org/10.1109/cloudnet.2017.8071523
http://dx.doi.org/10.1109/bloc.2019.8751388
http://dx.doi.org/10.1109/ghtc.2016.7857258
http://dx.doi.org/10.1109/srds.2007.27
http://dx.doi.org/10.1007/3-540-49201-1_11
http://dx.doi.org/10.1109/ipdps.2005.129
http://dx.doi.org/10.2197/ipsjjip.23.105
http://dx.doi.org/10.1109/glocom.2015.7417305
http://dx.doi.org/10.1109/ccnc.2009.4784954

2294
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Jingyu Sun received her M.E. and Ph.D. de-
grees from Tokyo University, Japan, in 2013 and
2016. From 2016, she joined NTT and started
her research about ubiquitous and Internet of
Things platform technologies at Network Inno-
vation Laboratories.

Susumu Takeuchi received his M.E. and
Ph.D. degrees from Osaka University, Japan,
in 2003 and 2006, respectively. From 2006 to
2009, he was an assistant professor of Grad-
uate School of Information Science and Tech-
nology, Osaka University. In 2009, he joined
National Institute of Information and Commu-
nications Technology (NICT) as an expert re-
searcher. Since he joined NTT in 2011, he re-
searched ubiquitous and Internet of Things plat-
form technologies. He received IPSJ Best Paper

Award in 2011 and JIP Specially Selected Paper Award in 2014. He is cur-
rently a senior research engineer in Network Innovation Laboratories. He
is a member of IEEE and IPSJ.

Kazuyuki Shudo received B.E. in 1996,
M.E. in 1998, and a Ph.D. degree in 2001 all in
computer science from Waseda University. He
worked as a Research Associate at the same uni-
versity from 1998 to 2001. He later served as a
Research Scientist at National Institute of Ad-
vanced Industrial Science and Technology. In
2006, he joined Utagoe Inc. as a Director, Chief
Technology Officer. Since December 2008, he
currently serves as an Associate Professor at To-
kyo Institute of Technology. His research inter-

ests include distributed computing, programming language systems and in-
formation security. He has received the best paper award at SACSIS 2006,
Information Processing Society Japan (IPSJ) best paper award in 2006, the
Super Creator certification by Japanese Ministry of Economy Trade and
Industry (METI) and Information Technology Promotion Agency (IPA) in
2007, IPSJ Yamashita SIG Research Award in 2008, Funai Prize for Sci-
ence in 2010, The Young Scientists’ Prize, The Commendation for Science
and Technology by the Minister of Education, Culture, Sports, and Tech-
nology in 2012, and IPSJ Nagao Special Researcher Award in 2013. He is a
member of IEEE, IEEE Computer Society, IEEE Communications Society
and ACM.

