FRT-Skip Graph:
A Skip Graph-Style Structured Overlay
based on Flexible Routing Tables

Masashi Hojo!* , Ryohei Bannot! and Kazuyuki Shudof

Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
INTT Network Innovation Laboratories, NTT Corporation
Midori-cho 3-9-11, Musashino-shi, Tokyo 180-0012, Japan
Email: hojo.m.aa@m.titech.ac.jp, banno.ryohei @lab.ntt.co.jp, shudo@is.titech.ac.jp

Abstract—Structured overlays enable a number of nodes to
construct a logical network autonomously and search each
other. Skip Graph, one of the structured overlays, constructs an
overlay network based on Skip List structure and supports range
queries for keys. Skip Graph manages routing tables based on
random digits; therefore, the deviation of them disturbs effective
utilization of the routing table entries and increases path length
than the ideal value. We therefore propose FRT-Skip Graph, a
novel structured overlay that solves the issues of Skip Graph
and provides desirable features not in Skip Graph. FRT-Skip
Graph is designed based on Flexible Routing Tables and supports
range queries similarly to Skip Graph. Furthermore, it provides
features derived from FRT, namely, dynamic routing table size
and high extensibility.

I. INTRODUCTION

A structured overlay constructs an application layer network
composed of nodes on a computer network such as Internet.
Each node in an overlay has its identifier (ID) and the nodes
construct a logical network based on their IDs. Enabling nodes
to search each other is achieved by relaying messages for target
IDs. Each node determines a next hop to which the node relays
a message by referring its routing table. A routing table holds
pairs of a node ID and an IP address. In consequence of such
a routing mechanism, structured overlays prevent inefficient
communications like flooding and they are highly scalable.

Distributed hash table (DHT) [1], [2], [3] is an application
of structured overlays. DHT provides two functions that put
and get data in (key, value) format. Each data has a data ID
determined by a hash value for its key, and the data is stored in
a node that manages the range of IDs including the data ID. A
range of IDs of a node is determined by its ID and neighbors’
IDs. Put/get functions are performed by relaying queries to a
responsible node of the data ID on a overlay. Since IDs do not
preserve the order of keys due to the hash function, flexible
searches such as range queries are not supported in DHT.

In contrast to DHT, Skip Graph [4] is a structured overlay
that constructs a network while keeping the key order. Skip

* Present affiliation: NTT DATA Corporation, Toyosu Center Building,
Toyosu 3-3-3, Koto-ku, Tokyo 135-6033, Japan.

Graph has a network topology like Skip List [5], a data
structure of a extended linked list, and performs searching
data in O(log N) of path length similarly to many of DHT
algorithms. Furthermore, since it keeps the key order, it
supports range queries for keys. In Skip Graph, each node
constructs shortcut links based on random digits for keeping
path length short while retaining the order of keys. However,
introducing random digits for shortcut links often increases
path length.

Based on these advantages and disadvantages of Skip
Graph, we propose FRT-Skip Graph, a novel structured overlay
that constructs a network similar to Skip Graph and keeps path
length shorter than it. While it uses random digits to construct
a routing table, FRT-Skip Graph resolves the problem of Skip
Graph; usuless entries of a routing table. Furthermore, since
FRT-Skip Graph is designed based on Flexible Routing Tables
[6], it provides features derived from FRT, dynamic routing
table size and high extensibility.

In this paper, We describe the design of FRT-Skip Graph,
and prove that its routing is performed in O(log V) of path
length. Moreover, we observe its flexibility from FRT and
further improvement of its construction of a routing table.

II. RELATED WORK

In this section, first, we describe Skip Graph, a structured
overlay that is a base algorithm of our proposal overlay. Next,
we explain FRT, a scheme for designing routing algorithms
for overlay networks.

A. Skip Graph

Skip Graph [4] is a structured overlay that has a topology
like Skip List [5], one of the data structures. Skip List is a
randomized algorithm that constructs shortcut links stochas-
tically on a linked list for the sake of efficient search. Skip
Graph constructs such a topology by a large number of nodes
in an autonomous distributed way, and as well as Skip List,
it manages keys with a total ordering while holding the order.

e ey AV

level 0 3 ! i i 3 !
o= 1] L8 J—{11]
110 011 000\ 10 010 001 111

key membership vector

Fig. 1: An example of Skip Graph.

Therefore, Skip Graph performs range queries for keys that
cannot be supported in DHT.

Figure 1 shows an example of a network structure of Skip
Graph. In Skip Graph, each node maintains one key. Nodes
are arranged in the order of their keys, and all nodes compose
a network with bidirectional links at level 0. Additionally,
nodes construct shortcut links at each level higher than level
0. To determine a pair of nodes connected with eath other,
sequence of m-ary random digits, namely, membership vector
(MYV) is used (in this paper, let m be 2). A MV of a node is
independent of its key. At level ¢, shortcut links are constructed
by nodes with ¢ common prefixes of their MVs. According
to this method, the number of links, in other words, routing
table size of each node is O(log N), where N is the number
of nodes in the whole of overlay.

Routing in Skip Graph is similar to Skip List. Routing starts
at the highest level and approaches a target key at the level. If
the message cannot approach any more at the level, dropping
to the next level, the routing continues. This way of routing
can skip many nodes at a high level to approach the target
quickly, and it keeps path length within O(log V).

In Skip Graph, since nodes construct their routing tables
by MVs, inefficient routing tables often appear. For example,
a situation that two nodes maintaining close keys have MVs
with long common prefixes causes to construct shortcut links
over high- and low-levels between only the two nodes. In other
words, entries in a routing table prepared for each level are
filled with one node. In such a situation, many nodes cannot
be skiped at a high level in routing, and path length becomes
longer.

B. Flexible Routing Tables (FRT)

Flexible Routing Tables (FRT) is a scheme for designing
routing algorithms for overlay networks. Whereas many con-
ventional structured overlays strictly define a routing table
should be built as a combination of node IDs and construct it
by finding closest nodes to the IDs, FRT proposes an entirely
different routing table constructing scheme. That is, an overlay
based on FRT defines a total order of the routing table set <gr,
and improves a routing table in accordance with it. In contrast

to conventional structured overlays that restrict candidates for
arouting table, FRT-based overlays provide various advantages
explained in Sec. II-B1.

1) Advantageous Features of FRT: The algorithms designed
based on FRT have the following advantages:

« It is possible to adjust routing table size L dynamically.
L is adjusted in response to node’s capacity or network
stability.

o It is possible to design an algorithm that consistently
handles both single-hop routing and multi-hop routing.
If a node can hold all other nodes in its routing table
(N < L, where N is the number of nodes), the node can
forward a message in single-hop. Otherwise (N > L), a
message is relayed node by node.

o FRT-based algorithms are extensible to consider various
indices of routing performance. For example, Proximity-
aware Flexible Routing Tables (PFRT) [7] considers
network proximity, and Grouped Flexible Routing Tables
(GFRT) [8] considers node groups. Flow-based Flexible
Routing Tables (FFRT) [9] constructs a routing table by
measuring flow rate of messages.

2) Routing Table Management Operations: To construct
and to improve a routing table, FRT prepares two operations
as follows.

o Entry learning: Entry learning is an operation to insert
node’s information into a routing table. Executing this
operation, a node inserts a new other node’s information
into its routing table without screening. The node’s infor-
mation is available from various communication results,
and in addition, it is possible to get it by active lookup.

o Entry filtering: Entry filtering is an operation to remove
an entry from a routing table. When the number of entries
in a routing table exceeds L, this operation is executed
in order to retain a limitation of routing table size. The
entry is selected according to total order of the routing
table set described in Sec. II-B3.

In FRT-based routing table construction, at first, entry
learning is repeated until exceeding L. Then, a couple of entry
learning and entry filtering is executed continuously and the
routing table is refined gradually.

3) <gr: Total Order of the Routing Table Set: A FRT-
based overlay defines a total order of the routing table set
<gr to determine a better one of two routing tables. Between
two routing tables E and F, if we have F <yt F|, then
we determine E is better than F'. A FRT-based structured
overlay improves routing efficiency by refining routing tables
accordingly <rp. We can design a FRT-based overlay by
defining <grr considering a topology and a distance function
of the overlay.

4) Structured Overlays based on FRT: Several structured
overlays based on FRT are proposed to this day. FRT-
Chord [6], FRT-2-Chord [10] and FRT-Chord# [11] have one-
dimensional circular ID spaces as their topologies. A two-
dimensional structured overlay based on FRT is also proposed
[12].

self node

forward b backward
table table

Fig. 2: A routing table of FRT-Skip Graph.

III. FRT-SKIP GRAPH

In this section, we propose FRT-Skip Graph, a novel struc-
tured overlay that constructs a Skip Graph-style network to
enable range queries and solves the problem in Skip Graph
to keep path length short. In FRT-Skip Graph, each node has
a key and a MV similarly to Skip Graph, and its topology
is also based on Skip List structure. On the other hand,
differently from Skip Graph, shortcut links are not necessarily
bidirectional links. That is, when node A constructs a shortcut
link to node B, B does not need to construct a link to
A. Instead, each node refining its routing table, these links
eventually become symmetrical.

Such a routing table construction is based on Flexible
Routing Tables (FRT). Since we design FRT-Skip Graph based
on FRT, it provides high extensibility to improve routing
performance while keeping path length short. For example, we
can design an extended algorithm to execute range queries and
broadcast efficiently by holding nodes maintaining close keys
in a routing table. Besides, holding nodes with low network
latency preferentially, we aim to improve routing performance
from the point of view of network proximity.

A. Routing Table Construction

In this section, first, we explain structure of a routing table
of FRT-Skip Graph. Next, we define sticky entry and total
order of the routing table set in FRT-Skip Graph to construct
a routing table based on FRT.

1) Structure of Routing Table: Each node in FRT-Skip
Graph is arranged in the order of keys and manages links
both in the direction of smaller keys (to forward nodes) and
in the direction of larger keys (to backward nodes). Therefore,
a node manages two independent routing tables to insert both
forward nodes and backward nodes into. Hereinafter, they are
called forward table (FT) and backward table (BT).

Figure 2 shows structure of a routing table in FRT-Skip
Graph. Both FT and BT have L entries, where L is specified
independently by the node. Each entry contains node infor-
mation; a key, an IP address and a MV. In contrast to Skip
Graph in which routing table entries are assigned to each level
and a same node can be inserted into two or more entries,
FRT-Skip Graph constructs a flat routing table; each entry has
a different node from each other. Therefore, one node never
occupys more than one entry. Such a design of a routing table

solves the problem of Skip Graph; a shortcut link at level ¢
(the th entry of a routing table) has a close node and path
length becomes longer than the ideal case.

2) Sticky Entry: FRT-based structured overlays define some
entries as sticky entries. Sticky entries are excluded from
removal candidates for entry filtering. In FRT-Skip Graph, we
define two entries with the closest key from its own in both FT
and BT as sticky entries . All nodes hold their sticky entries
and form a doubly linked list at level 0, so that reachability to
any nodes is guaranteed. To enhance the churn tolerance, we
can assign several closest nodes for sticky entries and design
to construct bidirectional links between several close nodes.

3) <wrr-sa: Total Order of the Routing Table Set: In FRT-
Skip Graph, the superiority of a routing table is determined
by closeness to the self node and the level of each entry.
Hereinafter, we express both FT and BT as £ = {e;},—1,.._|E|
and a level of an entry e as e.lv. In F, each node is assigned an
index in increasing order of closeness to the self node. In this
paper, we use closeness to the self node for ordering relation
between two other nodes.

To define the total order of the routing table set of FRT-
Skip Graph, first, we observe a routing table of Skip Graph.
Levels defined in Skip Graph are used to estimate the number
of nodes between a self node and the other nodes in a linked
list where all nodes participate (in other words, a list at level 0)
with a stochastic approach. To be specific, an entry at level ¢ is
expected to be a distant node at an interval of 2! from the self
node. In Skip Graph, a node maintains one entry at each level
for both two directions and constructs shortcut links to distant
nodes that are expected to be at intervals of 20,2t ..., 2%,

In FRT-Skip Graph, we can expect equivalent efficiency
of path length to Skip Graph by designing a routing table
to contain each entry that is at each level of Skip Graph.
Furthermore, by focusing the problem of Skip Graph—an
entry at level 7 often cannot skip 2! nodes—, we presume that
it is desirable to contain several high level nodes preferentially
to increase efficiency of shortcut links.

From the above observations, we consider an ideal routing
table of FRT-Skip Graph as a routing table that holds the same
order of the number of entries at each level and depending
on routing table size, holds more entries at high levels pref-
erentially. To construct such a routing table, preparing some
expressions, we define the routing table set of FRT-Skip Graph
<FRT-SG-

First, we define Ej, a part of E determined by entries’ level.

Definition 3.1 (a partition of a routing table E according
to levels):

E;, ={e€ Elelv=1}. (D)

Next, we define a sequence by focusing the number of
members of FEj, in other words, the number of entries with
level [in E.

Definition 3.2 (seq(E): a sequence of levels in a routing
table F):

seq(E) = (=1, —l2,...), 2)
Vi <V, (|Elb j|)\/ ; Z‘Elj|/\li>l').
For example, when £ = Ey[[E1][E2]] Es,

Ey| = 3,
|E1| = 4, |E2| = 4 and |Es| = 1, we have seq(E) =
(—=2,-1,0,-3).

Definition 3.3 ((E)1y: a sequence of entries in a routing

table E according to levels): (E)y, is a sequence of entries in
a routing table F, in which each entry is arranged in decreasing
order of indices of members of Fj,, and each Ej, is arranged
in increasing order of ¢ of Ej,.
For example, when E = Eo[[E1[[E2][Es. |Eo] = 3,
|E1| = 4, |E2| = 4 and |E5| = 1 (the similar situation to
one mentioned above), we have (E), is arranged in Es, F1,
FEy, FEs, and entries in each F; are arranged in decreasing
order of their indices.

Then, using these definitions, the total order of the routing
table set is defined as follows.

Definition 3.4 (<prr.sc- the total order of the routing table
set):

E <prrsc F' & (seq(E) <dic seq(F))
V{(seq(E) =aic seq(F)) 3)

MN(E)v Zdie (F)v)}-
Where <4j. is lexicographical order:
{a;} <aic {bi} <& ax <bp (k=min{i|a; #b;}),
{a;} =aic {bi} < a;i=0b,
{ai} <aic {bi} & ({ai} <aic {b:}) V ({ai} =aic {bi}).

In entry filtering of FRT-Skip Graph, an entry e* € E*
satisfying the following condition is deleted by using <pgrT.3G
described above. Where E* is a set of entries in £ without
sticky entries.

E\{e"} <prrsc E\ {e},
B. Routing

e € E*. 4)

Routing in Skip Graph is performed by forwarding to an
entry that approaches closest to a target key as dropping
levels. On the other hand, routing in FRT-Skip Graph is
performed by only selecting an entry from all members in
the routing table that approaches closest to the target key;
that is, greedy routing. In contrast to Skip Graph that selects
a forwarding entry based on levels, FRT-Skip Graph selects
the best entry from all entries, and together with utilization
all entries without waste, FRT-Skip Graph keeps path length
shorter than Skip Graph.

To reveal that path length of FRT-Skip Graph achieves to
become equivalent to or shorter than Skip Graph, first, we
prepare several lemmas.

Lemma 3.1: In a network of FRT-Skip Graph constructed
with the number of nodes N, the number of entries in a routing
table derived from Skip Graph is at most O(log N).

Proof : In Skip Graph, the number of entries in a routing
table is length of the longest match of MV, in other words,
the value of highest level. As shown in Sec. II-A, the value
is O(log N), and moreover, a same node may practically
be inserted two or more entries. Therefore, the number of
different nodes is not more than the number of entries in Skip
Graph, that is,0(log N). O

Lemma 3.2: In a network of FRT-Skip Graph constructed
with the number of nodes NN, letting routing table size be L* =
O(log N), entries derived from Skip Graph are not deleted by
entry filtering of FRT-Skip Graph.

Proof : Let routing table size be L* = O(log N). From lem.
3.1, it is enough to contain all entries derived from Skip Graph.
Therefore, here we prove that these entries are not deleted by
entry filtering according to <prr_gg. From Def. 3.4, when
deleted according to <pgrT_gsG, an entry is selected which is
the most distant node at the level that has the most entries in
all levels. Since entries derived from Skip Graph are closest
node at their level, it is not selected to delete. d

Using these lemmas, we have the following theorem.

Theorem 3.1: In a network of FRT-Skip Graph constructed
with the number of nodes NN, letting routing table size be L* =
O(log N), path length becomes O(log V) after improvement
of a routing table by a sufficient number of times.

Proof : From Lem. 3.2, entries derived from Skip Graph
that are inserted into a routing table once are not deleted by
entry filtering. Therefore, here we discuss a situation that all of
these entries are inserted into a routing table after improvement
of a routing table by a sufficient number of times. In such a
situation, greedy routing adopted in FRT-Skip Graph selects
an entry to forward that are either an entry selected in routing
of Skip Graph or an entry approach to a target closer than it.
Since the routing in this policy repeated by each node keeps
path length equivalent to or shorter than Skip Graph, path
length in FRT-Skip Graph is O(log N). O

Theorem 3.1 shows that path length becomes O(log N) with
letting routing table size in each node be O(log N). In FRT-
Skip Graph, the routing table size can be specified to larger
value depending on stability of the network or node’s capacity,
and it is possible to configure to perform single-hop routing
as referred in Sec. II-B1.

C. Skip Graph Emulation

A routing table of FRT-Skip Graph can include all entries
derived from Skip Graph with enough the size of it. Therefore,
FRT-Skip Graph can emulate behavior of Skip Graph by
switching routing algorithm from greedy routing of FRT-Skip
Graph to one of Skip Graph. Emulation of Skip Graph allows
FRT-Skip Graph to be compatible with Skip Graph and to
apply to proposed applications of Skip Graph.

IV. EVALUATION

We implemented the proposed overlay on Overlay Weaver
[13], [14], an overlay construction toolkit, and performed
experiments.

——:ACK

. ®:
® (OF @

‘//'target \ /arget
©

source

o
Je

source

iterative forwarding recursive forwarding

Fig. 3: Two styles to forward queries.

In experiments shown below, we adopted iterative style to
forward queries that is performed by repeating to query a
present node about next nodes by the initiating node. As shown
in Fig. 3, there are two styles to forward queries, namely,
iterative forwarding and recursive forwarding. In iterative
forwarding, the initiating node can notice not only the target
node but also the nodes included in the route. Moreover, after
construction a routing table by lookups of the number of 200
times by each node, we measured path length of the lookups
for uniform random nodes.

A. Comparison with Skip Graph

We brought emulated Skip Graph for comparison referred in
Sec. ITI-C to evaluate routing performance of FRT-Skip Graph.
Emulated Skip Graph constructs a routing table similarly to
FRT-Skip Graph; however, it uses only entries derived from
Skip Graph in routing. We also note specifically in these
experiments that it does not adopt level-based routing of Skip
Graph but greedy routing similarly to FRT-Skip Graph. Path
length of this style of routing is equivalent to or shorter
than original Skip Graph, but not longer. In this experiment,
each node inserts all entries derived from Skip Graph by
improvement of a routing table by a sufficient number of
times to arrange the condition similar to Skip Graph. In the
following, Emulated Skip Graph is simply called Skip Graph.

In this experiment, we specified the number of nodes to
N = 100,1000, 10000 and routing table size of FRT-Skip
Graph to L = 7,10, 14, respectively—they are determined as
log N brought from routing table size of Skip Graph.

Figure 4 and Fig. 5 show the results of this experiment.
The averages and 99 percentiles of path length were calculated
from 10 times lookups for uniform random nodes by each node
(in total 10N times lookups). In both experiments, FRT-Skip
Graph kept path length drastically shorter than Skip Graph.
The reason we consider to be is the number of effective entries
and target nodes to select for shortcut links. In Skip Graph,
as referred in Sec. II-A, a same node may be inserted two
or more entries. Therefore, the number of effective entries in
a routing table is often less than log V. In contrast, in FRT-
Skip Graph, each node can insert different nodes from each
other into L = log IV entries. Moreover, in Skip Graph, some
entries at high level are often filled with closer nodes than
their desirable nodes. Since FRT-Skip Graph can contain two
or more nodes at a high level in a routing table and construct

51 2 Skip Graph
210 =FRT-Skip Graph U708
28
< 8.23
T 6
% 4 5.35
HEn B B
< 0 ‘
100 1000 10000
Number of nodes
Fig. 4: Average path length.
25 Skip Graph
220 =T 0
C
§1 5 16
g10 11
A
0
100 1000 10000

Number of nodes

Fig. 5: 99 percentile of path length.

shortcut links to distant nodes, the path length seems to have
been kept short.

B. Routing Table Size and Path Length

We experimented to measure average path length while
resizing a routing table by utilizing the feature of FRT-Skip
Graph; dynamic routing table. In this experiment, we specified
the number of nodes to N = 10000 and resized routing table
size from L = 14 to 20, 40, 80, and measured path length.

Figure 6 shows the result of this experiment. The averages of
path length were calculated from 10 times lookups for uniform
random nodes by each node (in total 10° times lookups). From
this result, we find that average path length became shorter as
routing table size increased. Especially, we resizing the size
from L = 14 to 20,40, average path length was reduced
significantly. Taking notice the values between L = 40 and
80, we find that it was little difference; however, it is because
that improvement of a routing table was not enough. If the
improvement continues by more times than 200, path length
in L = 80 becomes shorter.

In this experiment, we showed the result in the situation
on a large scale, such as N = 10000. On the other hand,
we confirmed that in the situation on a small scale, such as
N = 100, FRT-Skip Graph decreased path length to 1 by
specifing routing table size to L > N. That is, we revealed
that FRT-Skip Graph can handle both single-hop routing and
multi-hop routing.

V. EXTENSION OF FRT-SKIP GRAPH

In this section, we discuss several methods to improve the
efficiency to construct a routing table by extend the design of
FRT-Skip Graph.

5 493

548

e

46 m 462

% = 4.45 443

o4.4 u

S —_

S o

< 0 20 40 60 80 100

Routing table size

Fig. 6: Routing table size and average path length.

A. Adapting to Node Position

Since a network topology of Skip Graph is based on a linked
list, contrary to a ring topology, there is heterogeneousness in
routing performance brought by the position of a node. For
example, we taking notice of a node at the forward side of
the list, the number of former nodes in the list is less than the
other. In this case, path length to backward nodes becomes
longer than the average. On the other hand, at a node around
the center of the list, path length to both directions is still
short.

FRT-Skip Graph can deal with this heterogeneousness by
adjusting the balance between two routing tables in both
directions depending on the position of the node. In particular,
a node autonomously reassigns routing table size—in this
paper, it is L in each routing table, and the total is 2L—to
increase the number of entries in the routing table for the
direction where a lot of nodes exist. To implement such an
algorithm, we have to bring a method to estimate the node
position. Alternatively, it is possible to redesign <prr.sG tO
manage shortcut links for both directions in only one routing
table.

B. Efficient Entry Learning

Structured overlays based on FRT insert nodes’ information
into a routing table continually brought from various commu-
nication results. In FRT-Skip Graph, since it refines a routing
table by referring levels of entries, it is significant to notice
desirable nodes for a routing table; especially, the nodes at
high levels.

Iterative forwarding (as shown in Fig. 3) that enables the
querying node to notice relaying nodes is especially effective
in FRT-Skip Graph to find nodes at high levels. This is because
the relaying nodes select a next node that has long common
prefixes in MVs, and therefore, the each node in route has
a MV that has long common prefixes. For this reason, the
initiating node can learn effectively desirable nodes by iterative
forwarding.

In addition to entry learning with lookups for other nodes,
we can improve the performance to construct a routing table
by implementing a Skip Graph-style joining algorithm that a
joining node fills its routing table with existing nodes.

VI. CONCLUSION

In this paper, we proposed FRT-Skip Graph, a novel struc-
tured overlay that can perform range queries similar to Skip
Graph. FRT-Skip Graph solves the problem of Skip Graph

that the construction of a routing table based on random digits
brings useless entries and keeps path length drastically shorter
than Skip Graph.

Since FRT-Skip Graph is designed based on FRT, it provides
desirable features, that is, dynamic routing table size and high
extensibility. Utilizing these features, for example, FRT-Skip
Graph can decrease path length still shorter by maintaining
more shortcut links and adapt to the requirements from ap-
plications by extending its construction of a routing table to
utilize its entries effectively.

We revealed the routing performance of FRT-Skip Graph
by the logical and mathematical proof, and the experimental
results showed that it keeps path length much shorter than
Skip Graph.

Future work includes an algorithm to adjust the balance
between two routing tables in both directions depending on
the position of the node. Besides, we will investigate behavior
of FRT-Skip Graph with extremely small routing table size.

ACKNOWLEDGMENT

We wish to thank Prof. Kota Abe at Osaka City University
for discussions and comments. This work was supported by
JSPS KAKENHI Grant Numbers 25700008 and 26540161.

REFERENCES

[11 I Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-
ing, vol. 11, no. 1, pp. 17-32, 2003.

[2] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Proc. IPTPS’02. Springer,
2002, pp. 53-65.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Proc.
Middleware 2001. Springer, 2001, pp. 329-350.

[4] J. Aspnes and G. Shah, “Skip Graphs,” ACM Transactions on Algo-
rithms, vol. 3, no. 4, Article 37, 2007.

[5] W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668-676, 1990.

[6] H. Nagao and K. Shudo, “Flexible Routing Tables: Designing Routing
Algorithms for Overlays Based on a Total Order on a Routing Table
Set,” in Proc. IEEE P2P 2011. IEEE, 2011, pp. 72-81.

[7] T. Miyao, H. Nagao, and K. Shudo, “A Method for Designing Proximity-
aware Routing Algorithms for Structured Overlays,” in Proc. IEEE ISCC
2013. IEEE, 2013, pp. 508-514.

[8] H. Nagao and K. Shudo, “GFRT-Chord: Flexible Structured Overlay
Using Node Groups,” in Proc. IEEE UIC 2014. 1EEE, 2014, pp. 187-
195.

[91 Y. Ando, H. Nagao, T. Miyao, and K. Shudo, “Routing Table Construc-

tion Method Solely Based on Query Flows for Structured Overlays,” in

Proc. IEEE P2P 2014. IEEE, 2014, pp. 1-5.

Y. Ando, H. Nagao, T. Miyao, and K. Shudo, “FRT-2-Chord: A

DHT Supporting Seamless Transition between On-hop and Multi-hop

Lookups with Symmetric Routing Table,” in Proc. ICOIN 2014. 1EEE,

2014, pp. 170-175.

T. Miyao, H. Nagao, and K. Shudo, “A Structured Overlay for Non-

uniform Node Identifier Distribution Based on Flexible Routing Tables,”

in Proc. IEEE ISCC 2014. 1EEE, 2014.

M. Hojo, H. Nagao, T. Miyao, and K. Shudo, “A Two-dimensional

Structured Overlay Based on Flexible Routing Tables,” in Proc. IEEE

ISCC 2015. 1EEE, 2015, pp. 309-314.

K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay Weaver: An Overlay

Construction Toolkit,” Computer Communications, vol. 31, no. 2, pp.

402-412, 2008.

K. Shudo, “Overlay Weaver,” http://overlayweaver.sourceforge.net,

[Accessed 27 February 2016].

[10]

(11]

(12]

[13]

[14]

