
A Distributed Topic-based Pub/Sub Method
for Exhaust Data Streams Towards Scalable Event-driven Systems

Ryohei Banno, Susumu Takeuchi, Michiharu Takemoto, Tetsuo Kawano, Takashi Kambayashi and Masato Matsuo
NTT Network Innovation Laboratories, NTT Corporation

Tokyo, Japan
Email: banno.ryohei@lab.ntt.co.jp

Abstract—Distributed pub/sub messaging has become indis-
pensable for event-driven systems. There are methods for achiev-
ing high scalability regarding topic-based pub/sub by using
structured overlay networks. However, these methods waste
network resources concerning “exhaust data,” which have low or
no value most of the time. There are at least two problems: each
publisher node continues to forward data to a relay node even
if there are no subscribers, and multicast trees are constructed
which are excessively large for low value data, namely having
a small number of subscribers. In this paper, we formulate the
requirements of overlay networks by defining a property called
“strong relay-free” as an expansion of relay-free property, and
propose a practical method satisfying the property by using Skip
Graph. The proposed method involves publishers and subscribers
composing connected subgraphs to enable detecting the absence
of subscribers and autonomously adjusting the tree size. Through
simulation experiments, we confirmed that the proposed method
can suspend publishing adaptively, and shorten the path length
on multicast trees by more than 75% under an experimental
condition with 100,000 nodes. The proposed method is competent
for decentralized event-driven systems with encouraging the
locally produced data to be consumed locally.

Keywords—distributed pub/sub, overlay networks, Skip Graph,
relay-free, exhaust data, IoT.

I. INTRODUCTION

The spread of Internet-connected devices has lead to a
variety of discussions about the coming of the Internet of
Things (IoT) [1]. The IoT is expected to encompass various
smart services that are typically event-driven, i.e., controlling
devices in accordance with some kind of event in the real
space observed by sensors.

To provide such services, pub/sub messaging [2] is in-
dispensable due to the efficiency for real-time delivery of
sensor data compared to traditional request-reply messaging.
In topic-based pub/sub, messages are published to logical
channels called “topics”. Users subscribe to topics of interest
and receive messages published on those topics. This paradigm
in which messages are exchanged through topics provides
decoupling between publishers and subscribers, e.g., each
publisher has no concern with the location of subscribers that
will receive a published message.

Conventional topic-based pub/sub architectures have a bro-
ker server for managing topics [3], [4]. The broker gathers all
published messages and processes filtering and forwarding to
corresponding subscribers. In other words, these architectures
form a centralized model, which is easy to implement and

commonly used for a wide variety of applications such as RSS,
distribution of disaster prevention information, SNS, video
chat, and so on.

However, the above centralized model does not work ef-
ficiently for a certain kind of data called “exhaust data”,
which is predicted to occupy most of the IoT data [5]. The
characteristics of exhaust data can be described as follows:

• Wide area

Data are generated over a wide area in the physical
space.

• High frequency

Data are automatically and continuously generated
by devices, unlike today’s Internet in which humans
generate most of the content.

• Low value density

Data are generated as byproducts and without spe-
cific uses. These data have low or no value most of
the time, but sometimes highly useful such like drive
recorders.

Namely, a tremendous amount of published data is concen-
trated on the broker with oppressing network resources. This is
unprofitable because the data arriving at the broker are mostly
discarded due to its low value density (see Figure 1(a)).

Accordingly, we are focusing on a model using edge brokers
as shown in Figure 1(b). Edge brokers are placed in front of
the Internet described as a cloud in the figure, i.e., they are
installed over a wide area. Published data and subscriptions are
collected at the closest edge broker, and edge brokers exchange
essential data. This model prevents imprudent forwarding
of exhaust data to the Internet and encourages the locally
produced data to be consumed locally. Such concepts of
focusing on the periphery of the outer edge of core networks
has become increasingly important, e.g., the proposal of “Edge
computing” [6].

We now give an example to discuss the requirements of the
edge broker model. A video stream captured with a camera
sensor in a city is often useless because it captures just
ordinary unexciting events. However, sometimes it can be
used, for example, monitoring students on their way to school.
If there is no subscriber or there are only subscribers joining
the same edge broker, the video stream should not waste the
resources of the core network. On the other hand, when events,
e.g., flash mobs, occur, it may be required to forward the

Internet

Wasting network

resources

Broker

Sources or consumers of exhaust data

Mostly discarded

(a) Centralized broker model

Internet

Sources or consumers of exhaust data

Locally produced and

locally consumed

Edge brokers

Traffic of

bare essentials

(b) Edge broker model

Fig. 1. Pub/sub architectures for exhaust data streams

video stream to devices joining other edge brokers through
the Internet. Possibly these events lead to a flash crowd, which
needs scalable multicast mechanisms.

Our aim with this research is to enable pub/sub messaging
between edge brokers for exhaust data streams considering the
above issues. An edge broker becomes a subscriber/publisher
of a topic if one of the joining devices attempts to sub-
scribe/publish to the topic. Hereafter, a subscriber or publisher
means an edge broker playing the role of the subscriber
or publisher, except when we explicitly mention the joining
device.

The number of edge brokers should be large, therefore, a
scalable method for managing pub/sub messaging is necessary.
We focus on structured overlay networks known primarily for
Distributed Hash Tables (DHTs) [7], [8], [9]. They have suit-
able properties such as scalability, robustness, and elimination
of a single point of failure. Methods of topic-based pub/sub
using DHTs have been proposed [10], [11], [12].

However, these methods are not suitable for the edge broker
model because each broker must forward the published data to
other broker(s) even if there are no subscribers. Furthermore,
some of the methods construct a multicast tree for each
topic without taking into account the number of participants
(i.e., subscribers or publishers) of the topic. Thus, in the
case of topics that have a small number of participants, the

published data are forced to be gratuitously forwarded along
the excessively large trees. This wastes network resources and
increases delay time, though the trees are effective for topics
that have a large number of participants. These are serious
problems because exhaust data have low value densities, i.e.,
situations in which the number of participants is zero or small
are common.

For overcoming these inefficiencies, we first clarify the
requirements of overlay networks and focus on a property
called “relay-free”, which is mainly known in studies based
on unstructured overlay networks [13], [14]. The satisfaction
of the property provides an effectiveness for preventing the
gratuitous forwarding. However, it is still difficult to suspend
publications when there are no subscribers. Therefore, we
newly define a desirable property called “strong relay-free”
as an expansion of relay-free. In the strong relay-free prop-
erty, publishers and subscribers compose connected subgraphs
respectively, and these subgraphs are also connected to each
other. This leads to detectability of the absence of subscribers
and autonomous adjustability of the tree size depending on the
number of subscribers and publishers.

Subsequently, we propose a method for constructing overlay
networks satisfying the property using Skip Graph [15]. We
implemented simulation programs of the proposed method and
one of the DHT-based methods for some experiments with up
to approximately 100, 000 nodes. We compared the ability of
suspending publications and autonomous adjustability of tree
size, and confirmed the advantage of the proposed method. The
experimental results also show that our method can predict the
load on each edge broker unlike with the conventional method.

The rest of this paper is organized as follows. Section 2 in-
troduces related studies on topic-based pub/sub methods based
on structured overlay networks, with a discussion of their
inadequacy for exhaust data streams. Section 3 clarifies the
requirements for constructing desirable overlay networks and
formulates the requirements as the strong relay-free property,
while a practical method satisfying this property using Skip
Graph is described in Section 4. Section 5 shows the results
of simulation experiments to confirm the effectiveness of the
proposed method. Finally, we summarize and conclude this
paper in Section 6.

II. RELATED WORK

In this section, we provide an explanation of current meth-
ods of topic-based pub/sub messaging using structured overlay
networks. These methods use DHTs in common and have
been proposed as application layer multicast (ALM), where
multicast groups correspond to topics in topic-based pub/sub.

A. Topic-based pub/sub method using DHTs

Scribe [10] is an algorithm for achieving topic-based
pub/sub and uses the Pastry network [7]. In Scribe, nodes form
a tree for every topic. Each topic has a unique ID computed
from a topic name by using a hash function, e.g., SHA-256.
A node responsible for the ID on the Pastry network becomes
the root node of the tree of that topic. The root node is

Publishers of topic �

Subscribers of topic �

�� �� ��

�� �� ��

��

��

��

��

��

��

Responsible node

����	�

Responsible node

for ����	�

Responsible node

����	�

Responsible node

for ����	�

��
����

��

��

��

Fig. 2. Topic-based pub/sub by Scribe

called the rendezvous point while the other nodes of the tree
are called forwarders. A node that attempts to subscribe to
a topic sends a JOIN message towards the rendezvous point,
according to the Pastry’s routing protocol. A node that receives
the message adds the joining node to its children table. If it had
not been a forwarder of the topic before receiving the message,
it forwards the JOIN message towards the rendezvous point.
Therefore, the multicast path from the rendezvous point to the
joining node is constructed in reverse order of the Pastry’s
routing path as shown in Figure 2. Publishers of the topic
send messages towards the rendezvous point whose address
can be found by the Pastry’s routing protocol. Publishers can
cache the address and send messages to the rendezvous point
directly. Published messages are forwarded along the tree and
delivered to all the corresponding subscribers.

Bayeux [11] is built on top of Tapestry [9] and achieves
topic-based pub/sub in a similar way to Scribe. The primary
difference is that Bayeux uses the forward-path forward-
ing scheme, while Scribe uses the reverse-path forwarding
scheme [16]. In Bayeux, a node attempting to subscribe to
a topic sends a JOIN message towards the root node, and
each intermediate node in the path from the joining node to
the root node simply forwards the message. When the root
node receives the message, it sends a TREE message towards
the joining node. Each node in the path from the root node to
the joining node registers the joining node in its table.

CAN-MC [12], built on top of CAN [8], has presented a

somewhat different style compared to the above two methods.
CAN-MC consists of two types of CAN networks: the entire
CAN and the mini CAN. The entire CAN is joined by all
of the nodes and provides the function of looking up an
introducer node, which is specific for each topic. The mini
CAN is constructed for each topic independently and joined
by the nodes of the topic. A published message is delivered
by flooding over the corresponding mini CAN as follows:

• A publisher sends a message to all its neighbors.
• Each node receiving the message from its neighbor along

dimension i forwards it to nodes as follows: the neighbors
along dimension 1 to (i− 1), and those along dimension
i in the opposite of the receiving direction.

• Each node does not forward the message along a particu-
lar dimension if it has already traversed at least half-way
across the space from the publisher’s coordinates along
the dimension.

• Each node caches the sequence number of messages and
does not process a duplicated message.

B. Inadequacy for exhaust data streams

In the edge broker model, it is preferable that the pub/sub
messaging works efficiently especially when the number of
subscribers is small or zero, because exhaust data have low
value densities as described in Section I. However, conven-
tional methods have the following inefficiencies for handling
exhaust data streams on the edge broker model, though they
achieve high scalability.

1) Inability to suspend publishing: Conventional methods
cannot suspend publishing even if there are no subscribers.
In Scribe and Bayeux, publishers have no way to detect the
absence of subscribers, and have to continue to constantly
send messages towards the root node of the corresponding
topic. In CAN-MC, nodes join the mini CAN of the topic
of interest without any distinctions between subscribers and
publishers. As a result, each publisher is forced to continue to
flood messages as long as there are other publishers.

2) Gratuitous forwarding: Scribe and Bayeux construct a
multicast tree for each topic. The path length from the root
node to each subscriber is the same as the lookup path length
of Pastry and Tapestry, namely O(logN) where N is the
number of entire nodes. Because this length does not depend
on the number of nodes that are of the topic, published
messages are forced to be gratuitously forwarded along the
excessively long path even if there are only few subscribers.
This wastes network resources and increases the delay time of
delivery.

Figure 3 illustrates this problem. As a primitive consider-
ation, a heavy load is applied to the root node if it under-
takes forwarding messages to all corresponding subscribers,
as shown on the left side of Figure 3(a). Scribe and Bayeux
construct multicast trees to avoid this heavy load, as shown
on the left side of Figure 3(b). However, when there are
only few subscribers, these methods force messages to be
forwarded along the trees that have the same depth as the
case of numerous subscribers (see the right side of Figure

subscribers

Numerous subscribers Few subscribers

Economical

Heavy load

root node

(a) Centralized delivery

Load

distribution
Gratuitous

forwarding

Numerous subscribers Few subscribers

subscribers

root node

Same

depth

Same

depth

(b) Distributed delivery

Fig. 3. Difference in forwarding costs and loads by number of subscribers

3(b)). Regarding the case of few subscribers, the centralized
delivery described in the right side of Figure 3(a) can forward
more economically. It is also thought that most of the topics
usually have few subscribers because of the low value density
of exhaust data.

Thus, an efficient method is preferred, which achieves
both economical forwarding for few subscribers and load
distribution for numerous subscribers.

III. FORMULATION OF REQUIREMENTS

We first clarify the requirements for overcoming the prob-
lems described in Section II-B.

• Against the inability to suspend publishing, it is required
that all publishers should detect the switching between
subscribers’ absence and presence.

• Against gratuitous forwarding, it is required to shorten
the path length for a small number of subscribers, while
maintaining efficient load distribution of dissemination
for a large number of subscribers.

Each requirement can be met in primitive ways, such as
broadcasting queries to determine the presence of subscribers,
switching delivery mechanisms as shown in Figure 3 for
each topic, and so on. However these ways lack the global
perspective and lead to other inefficiencies, e.g., negative effect
on scalability. It is thus important for overlay networks to be
constructed along a suitable design, which is a constraint in a
sense. In the rest of this section, we focus on the “relay-free”
property as an effective design of overlay networks.

A. Relay-free property

The property of relay-free [13], also called Topic-connected
Overlay, is primarily discussed in studies based on unstruc-
tured overlay networks [14]. The definition is as follows:

Given a set of nodes V and a set of topics T ,
we define a Boolean-valued function Int(v, t) with

a node v ∈ V and topic t ∈ T as input. A node
v is interested in a topic t if Int(v, t) = true, i.e.,
node v is a publisher or subscriber of topic t. Given
an overlay network G = (W,E), where W = V
and E ⊆ V × V , G is relay-free if a subgraph of
G induced by nodes {v ∈ V |Int(v, t) = true} is
connected for all t ∈ T .

That is, in overlay networks with the satisfaction of relay-
free property, a published message is forwarded only between
nodes that are interested in the corresponding topic. It is
expected that this property can contribute to shortening the
path length for topics that have a small number of subscribers,
because the diameter of the subgraph corresponding to each
topic should become shorter in response to the decrease in
subscribers. In the field of structured overlay networks, CAN-
MC satisfies this property.

The satisfaction of the relay-free property provides suitabil-
ity for shortening path length, but it is still difficult to suspend
publications when there are no subscribers. This is due to the
fact that each publisher can obtain information on only its
neighbors and there is no node having all information of the
overlay network. Accordingly, a publisher cannot determine
whether there is any subscriber not included in its neighbors.

B. Definition of strong relay-free property

We newly define a desirable property called “strong relay-
free” as an expansion of relay-free for suspending publications.
In the strong relay-free property, we introduce the distinction
between subscribers and publishers, unlike that these are
treated as equivalent in relay-free. The definition is as follows,
where V, T,G have the same meanings as above.

We define a Boolean-valued function Sub(v, t)
and Pub(v, t) with a node v ∈ V and a topic
t ∈ T as input. A node v is a subscriber of a
topic t if Sub(v, t) = true, and it is a publisher
if Pub(v, t) = true. G is strong relay-free if all the
following three conditions are satisfied for all t ∈ T :

• A subgraph GS induced by nodes {v ∈
V |Sub(v, t) = true} is connected.

• A subgraph GP induced by nodes {v ∈
V |Pub(v, t) = true} is connected.

• A subgraph induced by GS and GP is con-
nected.

In overlay networks satisfying the strong relay-free property,
subscribers of each topic compose a connected subgraph. This
means that the presence or absence of subscribers is synony-
mous with that of one subgraph. This is suitable for detecting
the absence of subscribers under the constraint that each
publisher has information of only its neighbors. Specifically,
a publisher at the connection boundary between GS and GP

seems possible to conclude whether subscribers are absent by
checking only its neighbors. Furthermore, publishers of each
topic also compose a connected subgraph, so one can easily
disseminate the information about the absence of subscribers
to others.

77 2121 3333 148148 275275 399399LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

77 3333 148148
2121 275275 399399

275275 39939977 148148

77

2121 3333

148148 275275 399399

key membership vector

node A
001

node B
10

node C
01

node D
000

node E
110

node F
111

Fig. 4. Example of Skip Graph

IV. EFFICIENT TOPIC-BASED PUB/SUB METHOD

As mentioned previously, we have clarified the requirements
and formulated them as definition of the strong relay-free
property. In this section, we propose a practical method for
constructing overlay networks that satisfy the strong relay-free
property using Skip Graph [15]. Subsequently, we describe
the mechanism of suspending publications on the constructed
overlay networks.

A. Skip Graph

Skip Graph is an algorithm of structured overlay networks
providing the function of range search. Each node has a key
and can issue a query by specifying a range or a value against
the key space. Issued queries are delivered to nodes whose
keys are included in the range or exactly matched with the
value.

Skip Graph composes a multiplex structure of a skip
list [17], as shown in Figure 4. Level 0 is a doubly linked
list that consists of all nodes sorted in the order of keys. Each
node has a random sequence in base b1 called membership
vector, and composes a doubly linked list with nodes whose
membership vectors have the same first i digits in level i.

When a node issues a query, the search process starts from
the maximum level of the node. The query is forwarded among
nodes in the same manner as the skip list, i.e., skips long
distance at the higher level and gradually moves down to level
0.

The size of the routing table that each node must have
is O(logN) of the N participants, while the path length of
forwarding queries is also O(logN).

B. Multi-key Skip Graph

Multi-key Skip Graph [18] is an expansion of Skip Graph,
which enables participating nodes to possess multiple keys.
Each node (hereafter, called physical node) inserts its keys
onto Skip Graph as virtual nodes. Virtual nodes created from
the same physical node have an equivalent membership vector,
namely membership vectors are unique to physical nodes.

If a search query is forwarded among virtual nodes in the
same way as normal Skip Graph, there is a possibility that the

1In this paper, we consider the case of binary digits.

00 11 22 33 44 55LEVEL 0

LEVEL 1

LEVEL 2

00
66

00 00 0001 01 10

00 11 22 33 44 66

00 11 33 66
subrange

A
subrange

B
subrange

C

subrange
B1

subrange
B2

subrange
C1

subrange
C2

subrange
C2�

subrange
C2�

subrange B, C subrange C2

00 01 10
Query forwarding path
(among physical nodes)

Fig. 5. Query forwarding by multi-range forwarding

query passes through one physical node multiple times. To
avoid an increase in hops by such possibility, Multi-key Skip
Graph includes an efficient routing mechanism called multi-
range forwarding.

In multi-range forwarding, a query with its target range R
is forwarded as follows:

When a virtual node whose key is outside R
receives the query, the virtual node selects one from
the virtual nodes of its physical node on the basis
of proximity to R, and hands the query over to it.
If the nearest is itself, it processes forwarding in the
same way as Skip Graph.

When a virtual node whose key is within R
receives the query, the virtual node divides R into
subranges by the keys of its physical node. The
query is duplicated and forwarded to other physical
nodes with each subrange attached instead of R.
Figure 5 shows an example. There are three physical
nodes whose membership vectors are 00, 01, and 10.
When the virtual node, whose key is 0, receives a
query of target range 0 ≤ key ≤ 6, the range is
divided into three subranges: A, B, and C. Subrange
B and C are forwarded to physical node 01 from 00,
then are divided into subranges: B into B1 and B2,
C into C1 and C2. Finally, subrange C2 is forwarded
to physical node 10 from 01 and devided into C2α
and C2β, but they expire because there are no more
physical nodes to receive the query.

With these rules, each physical node receives the same
query only once, and the path length of forwarding queries
is O(logN) where N is the number of physical nodes but not
virtual nodes.

C. Proposed method

1) Construction satisfying strong relay-free property: We
first assume that each node possesses the names of topics
of interest as a subscriber or a publisher. By using the
names as keys and constructing Multi-key Skip Graph, topic-
based pub/sub is possible. Publishers can deliver messages to
subscribers by range queries of Multi-key Skip Graph. At this
point, the overlay network is relay-free because subscribers

���� ����

subscriber publisher

�������������������� ���������������� ���������������� ��������

���� ����

��������

����

����

����

����

����

����

����
����

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

Topic �� Topic ����Topic ����

���	
�(��)���	
�(��) ����
�(��)����
�(��)

��(��)��(��)

Fig. 6. Ordered relation of nodes in proposed method

and publishers joining the same topic are contiguous at level
0.

With our method, we give totally ordered relation between
subscribers and publishers with lower priority than topic
names. For instance, such a totally ordered relation is possible
by adding suffixes that are different among subscribers and
publishers to topic names, e.g., T1 pub is the key of publishers
of topic T1 while T1 sub is the key of subscribers. As shown
in Figure 6, in addition to the fact that the units of every topic
are sorted, units of every node type (subscriber or publisher)
are also sorted inside the topic units at level 0.

In this overlay network, subscribers and publishers of each
topic are contiguous respectively at level 0, and the subgraph
of subscribers and that of publishers are also contiguous. Thus,
the overlay network satisfies the strong relay-free property.

Hereafter, we express the subgraph of publishers of topic
t ∈ T as SEGpub(t), and the subgraph of subscribers of topic
t ∈ T as SEGsub(t).

2) Publish, subscribe, unsubscribe: When a publisher
sends a message to a topic t, the range search mechanism
of Multi-key Skip Graph is used with the target range of
SEGsub(t). The process of subscribing/unsubscribing is pos-
sible by the insertion/deletion mechanisms of virtual nodes
in Multi-key Skip Graph (essentially similar to those of Skip
Graph).

3) Definition of rendezvous point: For ∀t ∈ T , it is ensured
that there exists unique publisher contiguous to SEGsub(t)
at level 0 as long as one or more publishers exist. We call
this publisher a “rendezvous point” with an expression of
rp(t). For example, the position of the rendezvous point of
topic ti is illustrated in Figure 6. rp(t) can conclude whether
subscribers are absent without any meta information about
topic t. Specifically, if the only neighbor v of rp(t) at level
0 in the direction of SEGsub(t) leads to Sub(v, t) = true,
there are one or more subscribers. Otherwise, there are no
subscribers.

When a new publisher is inserted between rp(t) and

SEGsub(t), the new publisher takes the place of the ren-
dezvous point thereafter. On the other hand, when an existing
rp(t) leaves topic t and there are other publishers, the neighbor
of rp(t) at level 0 in the direction of SEGpub(t) takes over
the position of the rendezvous point.

4) Suspending and resuming: Suspending and resuming
according to the switching between subscribers’ absence and
presence is possible by the rendezvous point, which is respon-
sible for detecting the switching and notifying other publishers.
When all subscribers of topic t leave, rp(t) can detect it
passively by using a handler which catches the update of
routing tables of Multi-key Skip Graph. When rp(t) detects
the absence of subscribers, it sends a signal dictating suspend
to publishers, by using the range search mechanism with the
target range of SEGpub(t).

Conversely, when new subscribers appear in topic t, which
has had no subscribers, rp(t) can detect it passively in the
same way and is responsible for sending a signal dictating
resuming to publishers.

5) Inserting publishers: Newly joining publishers need to
conclude whether they should start publishing immediately
after finishing participation2.

In case that there has been any publisher of the corre-
sponding topic, the joining publisher is certain to exchange
messages with at least one existing publisher in the process of
inserting in Multi-key Skip Graph. The proposed method adds
information about the suspending status onto the messages,
and the joining publisher determines the correct status by
checking it.

If there were no publishers, the joining publisher will be the
rendezvous point. Hence, it can determine the correct status
by itself after finishing insertion.

6) Eliminating inconsistencies: In the proposed method,
two types of inconsistencies described below can occur by
the undelivered signals from rendezvous points caused by the
sudden disappearance of nodes on the notifying path.

i) There exists a publisher continuing to publish even if
there are no subscribers.

ii) There exists a publisher suspending even if there are
subscribers.

These inconsistencies can occur on every publisher, except
for rendezvous points. We describe the solutions for the
inconsistencies.

In i, a published message from a publisher of topic t is cer-
tain to pass through rp(t) as long as there are no subscribers.
When rp(t) receives a message from other publishers during
suspend, rp(t) checks the absence of subscribers and sends a
signal dictating suspend to the source publisher.

In ii, on the other hand, each publisher that is suspending
actively confirms the status concerning the suspension of
the neighbor at level 0 by periodically sending a dedicated

2Concerning a node which is both a subscriber and publisher of a topic, such
node just needs to insert a virtual node only into SEGsub(t) and continue
publishing towards SEGsub(t). The reason is that there exist both subscribers
and publishers as long as the node itself is alive. Therefore, such node can
be irrelevant to suspending/resuming mechanisms.

TABLE I
QUALITATIVE COMPARISON OF METHODS

Suspension Path length Storage cost Responsibility for cost

Proposed 3 O(log(pubt + subt)) O(pubt+subt
N

M logN) Each node

Scribe/Bayeux 7 O(logN) O(pubt
N

M + subt
N

M logN) Multiple nodes

CAN-MC 7 O(d(pubt + subt)1/d) O(pubt+subt
N

Md+ d) Each node

message. As a result of the confirmation, if there is a conflict
between the status of the neighbor and itself, the publisher
sends a reporting message towards rp(t). When rp(t) receives
the report, it checks the presence of subscribers and sends a
signal dictating resuming to SEGpub(t).

D. Qualitative assessment

We give a qualitative assessment of the proposed method
in comparison with the methods described in Section II-A.
We assume the following notations: M denotes the number
of topics, N denotes the number of nodes, pubt denotes the
number of publishers per topic, subt denotes the number of
subscribers per topic, and d denotes the number of dimensions
in CAN. To simplify, we also assume that each node is not
both a subscriber and publisher of the same topic.

Table I shows the comparison of the methods. The term
“Suspension” in the table denotes the ability to suspend
publishing. The proposed method can suspend publishing as
described above, while the other methods cannot.

“Path length” denotes the maximum length of paths
from publishers to subscribers. The proposed method needs
O(log(pubt + subt)), because a published message of topic t
is forwarded over the subgraph which consists of SEGsub(t)
and SEGpub(t). Scribe/Bayeux uses lookup paths of DHTs,
so the path length is O(logN). CAN-MC requires O(d(pubt+
subt)

1/d), due to flooding over the corresponding mini CAN.
Because the path length of the proposed method does not
depend on N unlike Scribe/Bayeux, it can reduce the con-
sumption of network resources and the delay time of delivery,
especially regarding topics having a small number of partici-
pants. CAN-MC also excludes N , and its path length depends
on d which can adjust the tradeoff between the path length
and storage cost.

“Storage cost” denotes the average size of routing tables
of all nodes. This cost affects the consumption of memory
and the maintenance overhead on each node. With the pro-
posed method, each publisher or subscriber is inserted onto
Multi-key Skip Graph as a virtual node which must have
O(logN) neighbors in the routing table. Thus, the average
size of routing tables is O(pubt+subt

N M logN). Regarding
Scribe/Bayeux, each subscriber forces intermediate nodes on
the forwarding path to possess children tables. This storage
cost is O(subtN M logN) in average. Besides this, each pub-
lisher caches the root node of the corresponding topic, then the
average cost is O(pubtN M). Accordingly, the total average cost
is O(pubtN M + subt

N M logN). With CAN-MC, each publisher
or subscriber is inserted onto mini CAN with the cost of
O(d), so the average cost is O(pubt+subt

N Md). Each node

also composes the entire CAN, thus O(pubt+subt
N Md+ d) is

required as a whole. The proposed method requires slightly
large cost compared to Scribe/Bayeux, but is not extremely
inferior. Concerning CAN-MC, the cost depends on d.

“Responsibility for cost” denotes nodes that are responsible
for the storage cost. Regarding the proposed method and CAN-
MC, when a subscriber or publisher is added, the joining
subscriber or publisher itself is responsible for the storage
cost. Some other nodes are forced to update routing tables, but
no one is basically forced to increase the size of its routing
table except for the joining node. On the other hand, with
Scribe/Bayeux, the storage cost concerning a subscriber or
publisher is taken by multiple nodes which are intermediate
nodes on the forwarding path. This seems to be preferable
from the viewpoint of load distribution, but it also means
that each node cannot predict its load of forwarding. In
other words, the fact that multiple nodes are responsible
for storage cost may lead to inconvenience in terms of the
load predictability. The details will be discussed later with
experimental results, in Section V-C.

V. EVALUATION

We evaluated our method through experiments with a sim-
ulation program implemented in Java. This section gives the
details of each experiment and its results. We chose Scribe as
the comparison target in these experiments, mainly because it
can be built on top of any DHTs. Skip Graph can be used to
construct a DHT by using a kind of routing which is referred
to as “Routing by Numeric ID” in SkipNet [19]. Indeed, this
type of DHT is implemented by PIAX [20]. Using a DHT on
top of Skip Graph is convenient to harmonize the experimental
conditions such as the size of routing tables with the proposed
method3. Therefore, we implemented Scribe on top of Skip
Graph in the simulation program.

Note that our experiments were aimed to show essential
tendencies because the actual performance is affected by
parameters, e.g., the radix of membership vectors can adjust
the tradeoff between the path length and size of routing tables.

A. Number of messages under suspending/publishing

To confirm the ability to suspend publishing, we mea-
sured the number of forwarded messages on the overlay

3Bayeux can also be built on top of any DHTs, unlike that CAN-MC is
specialized for using CAN. But Bayeux has almost the same characteristics
as Scribe from the viewpoint of the experiments described in this section, i.e.,
the number of messages, the length of the forwarding path and the correlation
between the number of sending/receiving and forwarding messages. Therefore,
we have chosen Scribe which was proposed later than Bayeux.

Fig. 7. Number of messages under suspending/publishing

network with several numbers of subscribers including zero.
The simulator generated 100, 000 nodes and constructed an
overlay network regarding the proposed method and Scribe
respectively. We set a topic with the following two patterns:

• A topic has 100 publishers and 1, 000 subscribers.
• A topic has 10 publishers and 1, 000 subscribers.

The simulator made subscribers unsubscribe in turns. At
the timing of that the number of subscribers matches 1, 000,
100, 10 and 0, the simulator forced publishers of the topic
to publish a message and counted the number of messages
forwarded on the overlay network.

Figure 7 shows the results of the averages of five repeated
measurements. The term “p/t” in the figure denotes the number
of publishers per topic. The graph indicates that the number
of messages drops to 0 when the number of subscribers is
0 regarding both patterns of the proposed method. Regarding
Scribe, messages are forwarded even if the number of sub-
scribers is 0. With both methods, the number of messages
becomes large according to the number of publishers or
subscribers.

B. Length of forwarding path of publications

We also evaluated the effectiveness against gratuitous for-
warding mentioned in Section II-B. In this experiment, we
calculated the average length of paths from each publisher
to each subscriber. Here pubt and subt denote the same as
described in Section IV-D.

In this experiment, every topic was the same size, i.e., the
sum of the number of publishers and subscribers was equiv-
alent. We assumed two topic-sizes: small and large. We also
assumed three combinations of pubt and subt: pubt < subt,
pubt = subt and pubt > subt. Thus, we set six patterns in
total, as listed in Table II. Each pattern had three different
amounts of nodes, 1, 000, 10, 000 and 100, 000. The number
of topics in each pattern was keyed to the number of nodes,
i.e., the value of “Number of topics” in Table II was obtained
by dividing “Number of total nodes” by the sum of pubt and
subt. For example, the number of topics in pattern α was 10
when the number of nodes was 10, 000.

The simulator constructed overlay networks for every pat-
tern and calculated the average length of the forwarding path

TABLE II
PATTERNS OF THE EXPERIMENT

pubt subt
Number of

topics
Number of
total nodes

α 10 990 1 → 100 1, 000 → 100, 000

β 1 9 100 → 10, 000 1, 000 → 100, 000

γ 500 500 1 → 100 1, 000 → 100, 000

δ 5 5 100 → 10, 000 1, 000 → 100, 000

ϵ 990 10 1 → 100 1, 000 → 100, 000

ζ 9 1 100 → 10, 000 1, 000 → 100, 000

(a) Proposed method

(b) Scribe

Fig. 8. Length of forwarding path of publications

from a publisher to every corresponding subscriber for all
publishers.

Figure 8 shows the results. Regarding the proposed method,
Figure 8(a) illustrates that the path length was not affected by
the total number of nodes but by the size of topics. This means
the proposed method has high scalability for the increase in the
total number of nodes and can prevent gratuitous forwarding.
On the other hand, the results for Scribe shown in Figure 8(b)
indicate that the path length is not affected by the size of
topics, which causes gratuitous forwarding.

For example, when focusing on patterns of α, γ and ϵ with
100, 000 nodes, the path length is less than 4 hops in the
proposed method while Scribe requires more than four times
the hops (16 hops).

C. Correlation between number of sending/receiving and for-
warding messages

We focused on another characteristic of the correlation
between the number of sending/receiving and forwarding
messages. This characteristic is important for predicting the
load of each node, namely edge broker.

(a) Proposed method

(b) Scribe

Fig. 9. Correlation between number of sending and forwarding

In distributed pub/sub using structured overlay networks,
each node is responsible for forwarding messages to relevant
succeeding destinations. The forwarding load is determined
according to properties of topics which the node is on the paths
of. For example, the load must be heavy regarding a node re-
sponsible for forwarding messages of a topic whose publishers
frequently send large amounts of data. The forwarding load is
closely related to routing tables, which store the forwarding
path information on each node. The information is registered
on nodes In a different way for every method, as described as
“Responsibility for cost” in Section IV-D.

If the forwarding load correlates with the load of sending
as publishers or receiving as subscribers, each edge broker
can easily predict the necessary specifications of hardware
resources. For instance, if there is a device attempting to
subscribe to a topic of video streaming, an edge broker which
the device joins will be under a heavy load and should be
strengthened.

Conversely, if the forwarding load does not correlate, it
is difficult to predict from local information. Such a case
is unsuitable when it is assumed that edge brokers compose
autonomous distributed networks such as the Internet, namely
edge brokers are not managed by a single enterprise intensively
but are arbitrarily added/removed by various enterprises or
individuals.

In this regard, we conducted an experiment in which
the simulator counts the number of forwarding and send-
ing/receiving messages for every node. Precisely, “number
of forwarding” is the number of times that a physical node
forwards a message to others, including the initial hops from

(a) Proposed method

(b) Scribe

Fig. 10. Correlation between number of receiving and forwarding

publishers. “number of sending” is the number of times that
a publisher sends a message created on itself. “number of
receiving” is the number of times that a subscriber receives a
message associated with the topic the subscriber is subscribing
to.

The conditions of this experiment are as follows: pubt
was 1 and subt was 1, 000. The number of topics was
100, thus the total number of nodes was 100, 100. The 100
publishers joining different topics were assigned different time
intervals of sending. The intervals were calculated so as to
make the number of sending during the simulation period be
1, 2, ..., 100.

The simulator constructed overlay networks with the above
conditions, and forced publishers to publish at respective
intervals. Figure 9 shows the results obtained by plotting
all publishers, and Figure 10 shows those by plotting all
subscribers. Regarding the proposed method, both the number
of sending (Figure 9(a)) and receiving (Figure 10(a)) messages
are clearly correlated with the number of forwarding messages.
In Figure 10(a), nodes are plotted linearly on three different
angled lines. This is because of the characteristic of multi-
range forwarding in Multi-key Skip Graph, which forces each
node to forward at most twice for each dissemination of a
published message4. In contrast, the results of Scribe indicate
that there are no correlations as shown in Figures 9(b) and
10(b).

4Specifically, the forwarding paths in Multi-key Skip Graph compose
incomplete binary trees. Each root node or intermediate node has one or two
children, and each leaf node has no child. This is why each node forwards a
message at most twice.

TABLE III
CORRELATION COEFFICIENTS AND CONFIDENCE INTERVALS

Correlation
coefficients 99% Confidence intervals

Figure 9(a) 1.0 N/A

Figure 9(b) 0.1310 −0.1290 ≤ ρ ≤ 0.3742

Figure 10(a) 0.5483 0.5426 ≤ ρ ≤ 0.5540

Figure 10(b) −0.0045 −0.0126 ≤ ρ ≤ 0.0037

The correlation coefficients and their confidence intervals
at the 99% level were calculated, as shown in Table III. Note
that the confidence interval of Figure 9(a) is written as N/A
because the Fisher transformation cannot be applied on the
correlation coefficient value of 1.0.

Considering practical applications, it is natural that the
frequency of publishing is unbalanced. For example, Twitter
is a famous and large service based on pub/sub messaging.
It has been reported that the number of tweets for every
user follows the power law distribution, and 20% of users
account for 84% of tweets [21]. Scribe or similar methods
receive negative effect from such an imbalance in terms of
load predictability. In fact, there is a node that receives a few
messages and forwards more than 1, 200 in Figure 10(b).

VI. CONCLUSION

We defined “strong relay-free” as a desirable property of
overlay networks for handling exhaust data. Subsequently, we
proposed a method of topic-based pub/sub using Skip Graph.
The proposed method can construct overlay networks that
satisfy the above property. Our method is highly scalable
and can suspend publications by detecting the absence of
subscribers and prevent the gratuitous forwarding of published
messages.

From the simulation experimental results, we confirmed that
the above characteristics work effectively with the proposed
method in comparison with Scribe. Regarding the problem of
gratuitous forwarding, the path length of the proposed method
was less than one fourth that of Scribe when the number
of nodes was 100, 000. It was also shown that the proposed
method could predict the forwarding load, which Scribe could
not.

These results indicate that our method is suitable for the
edge broker model described in Section I. The growth in
IoT accelerates the creation of exhaust data. Therefore, the
proposed method can reduce the wasting of network resources
and encourage the locally produced data to be consumed
locally. The proposed method can be useful for not only the
edge broker model but also various situations with a large
amount of nodes, e.g., pub/sub messaging in a single data
center.

This time we focused on confirming the characteristics
of the proposed method. We believe it is also important to
evaluate the actual effectiveness of it. For example, the effect
of suspending is considered to depend on the distribution
of the number of subscribers along the time axis direction.

Thus, we plan to use actual data that reflect various biases
of distributions in the real world, e.g., the relation data of
SNSs. We also plan to evaluate the proposed method on actual
networks.

REFERENCES

[1] S. Hodges, S. Taylor, N. Villar, and J. Scott, “Prototyping Connected
Devices for the Internet of Things,” IEEE Computer, pp. 26–34, 2013.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114–131, 2003.

[3] Oracle, “Java Message Service (JMS),” www.oracle.com/technetwork/
java/jms (accessed January 31, 2014).

[4] OASIS, “AMQP,” www.amqp.org (accessed January 31, 2014).
[5] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and

A. H. Byers, Big data: The next frontier for innovation, competition, and
productivity. McKinsey Global Institute, 2011.

[6] NTT, “Edge computing,” www.ntt.co.jp/news2014/1401e/140123a.html
(accessed January 31, 2014).

[7] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Systems,” in
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, 2001, pp. 329–350.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable Content-Addressable Network,” ACM SIGCOMM, vol. 31,
no. 4, pp. 161–172, 2001.

[9] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 41–53, 2004.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE:
A large-scale and decentralized application-level multicast infrastruc-
ture,” IEEE Journal on Selected Areas in communications, vol. 20, no. 8,
pp. 1489–1499, 2002.

[11] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz, “Bayeux : An Architecture for Scalable and Fault-tolerant
Wide-area Data Dissemination,” in International Workshop on Network
and Operating Systems Support for Digital Audio and Video, 2001, pp.
11–20.

[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
Level Multicast using Content-Addressable Networks,” in International
COST264 Workshop on Networked Group Communication, 2001, pp.
14–29.

[13] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Constructing
Scalable Overlays for Pub-Sub with Many Topics,” in ACM Symposium
on Principles of Distributed Computing, 2007, pp. 109–118.

[14] V. Setty, M. V. Steen, R. Vitenberg, and S. Voulgaris, “PolderCast: Fast,
Robust, and Scalable Architecture for P2P Topic-based Pub/Sub,” in
International Middleware Conference, 2012, pp. 271–291.

[15] J. Aspnes and G. Shah, “Skip Graphs,” ACM Transactions on Algorithms
(TALG), vol. 3, no. 4, pp. 37:1–37:25, 2007.

[16] R. Zhang and Y. C. Hu, “Borg: a Hybrid Protocol for Scalable
Application-level Multicast in Peer-to-Peer Networks,” in International
Workshop on Network and Operating Systems Support for Digital Audio
and Video, 2003, pp. 172–179.

[17] W. Pugh, “Skip Lists : A Probabilistic Alternative to Balanced Trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[18] Y. Konishi, M. Yoshida, S. Takeuchi, Y. Teranishi, K. Harumoto, and
S. Shimojo, “An Extension of Skip Graph to Store Multiple Keys
on Single Node,” Journal of Information Processing Society of Japan,
vol. 49, no. 9, pp. 3223–3233, 2008 (in Japanese).

[19] N. J. A. Harvey, J. Dunagan, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman, “SkipNet: A Scalable Overlay Network with Practical
Locality Properties,” in USENIX Symposium on Internet Technologies
and Systems, 2003, pp. 9–23.

[20] PIAX, “PIAX: P2P Interactive Agent eXtensions,” www.piax.org/en
(accessed January 31, 2014).

[21] A. Welhuis, “Twitter and the pareto principle,” www.annouckwelhuis.
nl/twitter-and-the-pareto-principle-2 (accessed January 31, 2014).

